MATH 111
 EXAM 01
 SOLUTIONS (V1)

BLAKE FARMAN
UNIVERSITY OF SOUTH CAROLINA

1. Definitions

1 (3 Points). Fill in the blanks with the correct factorizations.
(a) $A^{2}-B^{2}=(A-B)(A+B)$.
(b) $A^{2}+2 A B+B^{2}=(A+B)^{2}$.
(c) $A^{2}-2 A B+B^{2}=(A-B)^{2}$.

2 (6 Points). Let a, b be non-zero real numbers and m, n integers. Fill in the blanks
(1) $a^{0}=1$
(4) $\frac{a^{m}}{a^{n}}=a^{m-n}$
(2) $a^{-n}=\frac{1}{a^{n}}$
(5) $(a \cdot b)^{n}=a^{n} b^{n}$
(3) $a^{m} \cdot a^{n}=a^{m+n}$
(6) $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

3 (2 Points). Given a Quadratic Equation, $a x^{2}+b x+c=0$, the solutions are given by the Quadratic Formula. State the Quadratic Formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

4 (3 Points). Fill in the blanks:
To make $x^{2}+b x$ a perfect square, add $\left(\frac{b}{2}\right)^{2}$. This gives the perfect square

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

5 (3 Points). Fill in the blanks:
An equation in variables x and y defines the variable y as function of the variable x if each value of x corresponds to exactly one value of y.

6 (3 Points). Let $f(x)$ be a function of the variable x, and assume that $a \leq b$ are real numbers. State the formula for the net change between the inputs $x=a$ and $x=b$.

The net change is given by the formula

$$
f(b)-f(a) .
$$

2. Problems

7 (16 Points). Consider the equation

$$
x^{2}+2 y=6 .
$$

(a) Does this equation define y as function of x ? Briefly justify why or why not. If it does, then give the value of y when $x=2$.

Solution. This equation does define y as a function of x. Subtracting x^{2} from both sides we obtain

$$
2 y=6-x^{2}
$$

Dividing both sides by 2 we obtain

$$
y=\frac{6-x^{2}}{2}
$$

and this is clearly a function. When $x=2$,

$$
y=\frac{6-2^{2}}{2}=\frac{6-4}{2}=\frac{2}{2}=1
$$

(b) Does this equation define x as function of y ? Briefly justify why or why not. If it does, then give the value of x when $y=2$.

Solution. This equation does not define x as a function of y. When $y=2$ we have the equation

$$
6=x^{2}+2(2)=x^{2}+4
$$

Subtracting 4 from both sides yields

$$
x^{2}=6-4=2
$$

so there are two choices for value of x : either $\sqrt{2}$ or $-\sqrt{2}$.
8 (16 Points). Let $f(x)=x^{2}-x+1$. Compute the net change between $x=1$ and $x=4$.
Solution. The net change is given by

$$
f(4)-f(1)=\left(4^{2}-4+4\right)-\left(1^{2}-1+1\right)=16-1=15 .
$$

9 (16 Points). Add the following rational expressions and simplify the result,

$$
\frac{1}{x-3}+\frac{-6}{x^{2}-9}
$$

Solution. First, we must factor the denominators to determine the least common multiple. The denominator $x-3$ cannot be factored any further, but

$$
x^{2}-9=(x-3)(x+3) .
$$

This tells us common denominator is $x^{2}-9$, so

$$
\begin{aligned}
\frac{1}{x-3}+\frac{-6}{x^{2}-9} & =\left(\frac{x+3}{x+3}\right) \frac{1}{x-3}-\frac{6}{x^{2}-9} . \\
& =\frac{x+3}{x^{2}-9}-\frac{6}{x^{2}-9} \\
& =\frac{x+3-6}{x^{2}-9} \\
& =\frac{x-3}{(x+3)(x-3)} \\
& =\frac{1}{x+3} .
\end{aligned}
$$

10 (16 Points). Solve the equation

$$
2 x^{2}-6 x-20=0
$$

for x.

Solution. We first observe that we can factor a 2 out of the left-hand side to get

$$
2\left(x^{2}-3 x-10\right)=0 .
$$

By the Zero Factor Property, this says that either $2=0$ or $x^{2}-3 x-10=0$; since the first equation is nonsense, it is equivalent to solve the equation

$$
x^{2}-3 x-10=0 .
$$

One either observes that

$$
x^{2}-3 x-10=(x-5)(x+2)=0
$$

implies by the Zero Factor Property that the solutions are $x=5$ and $x=-2$, or uses the Quadratic Formula

$$
\begin{aligned}
x & =\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-10)}}{2(1)} \\
& =\frac{3 \pm \sqrt{9+40}}{2} \\
& =\frac{3 \pm \sqrt{49}}{2} \\
& =\frac{3 \pm 7}{2}
\end{aligned}
$$

to see that the the solutions are given by

$$
x=\frac{3+7}{2}=\frac{10}{2}=5
$$

and

$$
x=\frac{3-7}{2}=\frac{-4}{2}=-2 .
$$

11 (16 Points). Find the domain of the function

$$
f(x)=\sqrt{x^{2}+2 x-3}
$$

Express the solution using interval notation and graph the domain on the number line.
Solution. We first observe that for f to be well-defined at x, the value of $x^{2}+2 x-3$ must be non-negative. Hence finding the domain of f is equivalent to solving the quadratic inequality

$$
0 \leq x^{2}+2 x-3
$$

We first solve the equation

$$
x^{2}+2 x-3=(x+3)(x-1)=0
$$

to see that equality is obtained whenever $x=1$ or $x=-3$. To find the rest of the solutions to the inequality, we must check one number from each of the intervals $(-\infty,-3),(-3,1)$, and $(1, \infty)$. We check the signs at $x=-4, x=0$, and $x=2$.

When $x=-4$, we have

$$
(-4)^{2}+2(-4)-3=(-4+3)(-4-1)=(-1)(-5)=5>0 .
$$

This tells us that $x^{2}+2 x-3$ is positive on the interval $(-\infty,-3)$.
When $x=0$, we have

$$
0^{2}+2(0)-3=-3<0 .
$$

This tells us that $x^{2}+2 x-3$ is negative on the interval $(-1,3)$.
When $x=2$, we have

$$
(2)^{2}+2(2)-3=(2+3)(2-1)=(5)(1)=5>0
$$

This tells us that $x^{2}+2 x-3$ is positive on the interval $(1, \infty)$
Combining this information, we have found that the inequality

$$
0 \leq x^{2}+2 x-3
$$

is true on the intervals $(-\infty,-3)$ and $(1, \infty)$. In interval notation, the solutions are therefore

$$
(-\infty,-3) \cup(1, \infty)
$$

We can represent this union of intervals on the number line as

12 (Bonus - 10 Points). Consider the function

$$
p(x)=x^{2}+5 x+6 .
$$

(a) Find two numbers, $a<b$, for which the net change of p from a to b is 6 .

Solution. This question simply asks that we find two values $a<b$ such that

$$
f(b)-f(a)=6
$$

The easiest possible solution would be to find a and b such that $f(b)=6$ and $f(a)=0$. This is equivalent to solving the two equations

$$
x^{2}+5 x+6=6 \text { and } x^{2}+5 x+6=0
$$

for x and identifying a solution to the first equation which is larger than some solution to the second equation.

To solve the first, we subtract 6 from both sides to obtain

$$
x^{2}+5 x=x(x+5)=0
$$

and note that this means either $x=0$ or $x=-5$. For the second, we can factor

$$
x^{2}+5 x+6=(x+3)(x+2)=0
$$

to see that either $x=-3$ or $x=-2$.
By some luck, we find two possible solutions. If we take $a=-2$, then we can take $b=0$ since

$$
f(0)-f(-2)=6-0=6
$$

Similarly, if we take $a=-3$, then we can also take $b=0$ since

$$
f(0)-f(-3)=6-0=0
$$

(b) Find two numbers, $c<d$, for which the net change of p from c to d is -6 .
[Hint: Your method from part (a) should also give you these values.]
Solution. Again, we observe that the easiest thing we could do is find two numbers, $c<d$, such that $f(d)=0$ and $f(c)=6$ so that the net change is

$$
f(d)-f(c)=0-6=-6 .
$$

Using our work from part (a), we can take $c=-5$ and either $d=-2$ or $d=-3$ since

$$
f(-2)-f(-5)=0-6=-6
$$

and

$$
f(-3)-f(-5)=0-6=-6
$$

Remark 1. There may well be many more solutions. These are just the easiest such solutions.

