MATH 111
 EXAM 02 SOLUTIONS

BLAKE FARMAN
UNIVERSITY OF SOUTH CAROLINA

1. Definitions

1 (4 Points). (a) State the Point-Slope form of a line passing through the point $\left(x_{0}, y_{0}\right)$ with slope m.

Solution.

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

(b) State the Slope-Intercept form of a line with slope m and y-intercept b.

Solution.

$$
y=m x+b
$$

2 (6 Points). Let $f(x)$ be a function. State the average rate of change of f between $x=a$ and $x=b$.

Solution.

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(a)-f(b)}{a-b}
$$

3 (5 Points). Let $f(x)$ be an exponential function and let a be the growth/decay factor. Express the growth/decay rate, r, in terms of a.

Solution.

$$
r=a-1
$$

4 (3 Points). (a) State the general form of an exponential function.

Solution.

$$
C a^{x}
$$

(b) When does such a function model exponential growth?

$$
\text { Solution. When } 1<a \text {. }
$$

(c) When does such a function model exponential decay?

Solution. When $0<a<1$.
5 (2 Points). Consider the two lines $f(x)=m_{1} x+b_{2}$ an $g(x)=m_{2} x+b_{2}$.
(a) When are f and g parallel?

Solution. When $m_{1}=m_{2}$.
(b) When are f and g perpendicular?

Solution. When any of the following three equivalent conditions occur

- $m_{1} m_{2}=-1$,
- $m_{1}=\frac{-1}{m_{2}}$, or
- $m_{2}=\frac{-1}{m_{1}}$.

2. Problems

6 (16 Points). In the following problems, use the given information to find the equation of the line in slope-intercept form.
(a) The line passing through the points $(-2,3)$ and $(5,-18)$.

Solution. The slope of the line between these points is

$$
\begin{aligned}
m & =\frac{3-(-18)}{-2-5} \\
& =\frac{3+18}{-7} \\
& =-\frac{21}{7} \\
& =-3 .
\end{aligned}
$$

The point-slope form of this line is

$$
y-3=-3(x-(-2))=-3(x+2)
$$

and the slope-intercept form is

$$
y=-3 x-6+3=-3 x-3
$$

(b) The line passing through the point $(3,-2)$ and parallel to the line $2 y-6 x=8$.

Solution. We can put the given line into slope-intercept form by first diving both sides by 2 to get

$$
y-3 x=4
$$

then adding $3 x$ to both sides to get

$$
y=3 x+4
$$

Thus the slope of the parallel line is also 3 . In point-slope form the desired line is

$$
y-(-2)=3(x-3)
$$

The slope-intercept form is

$$
y=3 x-9-2=3 x-11
$$

(c) The line passing through the origin (that is, the point $(0,0)$) and perpendicular to the line $4 y-x=8$.

Solution. Adding x to both sides of the given equation and then dividing both sides by 4 we see that the slope-intercept form of the line is

$$
y=\frac{x}{4}+8
$$

so the slope of a perpendicular line is -4 . Therefore the slope-intercept form of the desired line is

$$
y=-4 x
$$

7 (16 Points). Consider the two lines $f(x)=x+2$ and $g(x)=3 x+4$. Find the point (that is, the (x, y) pair) where these two lines intersect.

Solution. To find the point of intersection we need only solve the equation

$$
x+2=3 x+4
$$

for x. Subtracting x from both sides we get

$$
2=2 x+4
$$

Subtracting 4 from both sides we get

$$
-2=2 x .
$$

Finally, dividing both sides by 2 we get

$$
x=-1
$$

The y-coordinate is given by

$$
y=-1+2=1
$$

so the point of intersection is $(-1,1)$.

8 (16 Points). Let $f(x)=x^{2}-2$.
(a) Compute the average rate of change for f between $x=2$ and $x=5$.

Solution. The average rate of change is

$$
\begin{aligned}
\frac{f(5)-f(2)}{5-2} & =\frac{(25-2)-(4-2)}{3} \\
& =\frac{25-2-4+2}{3} \\
& =\frac{25-4}{3} \\
& =\frac{21}{3} \\
& =7 .
\end{aligned}
$$

(b) Give the Point-Slope form of the line that passes through $(2, f(2))$ and $(5, f(5))$.

Solution. The slope of this line is 7 , as computed above. The point-slope form of the line is

$$
y-2=7(x-2) .
$$

(c) Give the Slope-Intercept form of the line that passes through $(2, f(2))$ and $(5, f(5))$.

Solution. The slope-intercept form of the line is

$$
y=7 x-14+2=7 x-12 .
$$

9 (16 Points). Alice is hosting an event. She is renting a facility, which costs $\$ 150$, and providing refreshments, which cost $\$ 7$ per guest.
(a) Find a function, C, that models the total cost of the event if x people attend.

Solution.

$$
C(x)=7 x+150 .
$$

(b) Sketch a graph of C.

Solution. The function is a line starting from $(0,150)$.

(c) Evaluate $C(10)$ and $C(15)$. What do these numbers represent?

Solution. The value

$$
C(10)=7(10)+150=70+150=220
$$

represents the cost if 10 people attend and the value

$$
C(15)=7(15)+150=105+150=255
$$

represents the cost if 15 people attend.
(d) If the total cost for the event was $\$ 500$, how many people attended?

Solution. To find the number of people that attended the party, solve

$$
500=C(x)=7 x+150
$$

for x. The solution is given by subtracting 150 from both sides of the equation then dividing both sides of the equation by 7 , so

$$
x=\frac{500-150}{7}=\frac{350}{7}=50 .
$$

Therefore 50 people attended.
10 (16 Points). A population of size 32 grows by 25% every day.
(a) Give the daily growth factor for this population.

Solution. We are given the daily growth rate

$$
r=25 \%=\frac{25}{100}=\frac{25}{4(25)}=\frac{1}{4}
$$

so the daily growth factor is given by

$$
a=1+r=1+\frac{1}{4}=\frac{4}{4}+\frac{1}{4}=\frac{5}{4} .
$$

(b) Give an exponential model for the size of the population after t days.

Solution. The population is modeled by

$$
P(t)=32\left(\frac{5}{4}\right)^{t}
$$

(c) Determine the size of the population after 2 days.
[Hint: Express the growth factor as a fraction, rather than a decimal, and this will be very easy to compute.]

Solution. The population after 2 days is

$$
P(2)=32\left(\frac{5}{4}\right)^{2}=32\left(\frac{5^{2}}{4^{2}}\right)=32\left(\frac{25}{16}\right)=2(25)=50 .
$$

