MATH 111:
 HOMEWORK 01 SOLUTIONS

BLAKE FARMAN
UNIVERSITY OF SOUTH CAROLINA

A. 2

3. The set of numbers between but not including 2 and 7 can be written as follows:

Solution. (a) $\{x \in \mathbb{R} \mid 2<x<7\}$ in set builder notation.
(b) $(2,7)$ in interval notation.
4. Explain the differences between the following two sets: $A=[-2,5]$ and $B=(-2,5)$.

Solution. The set A contains the endpoints, 2 and -5 , but the set B does not.
$27 \& 29$: Find the indicated set if $A=\{1,2,3,4,5,6,7\}, B=\{2,4,6,8\}$, and $C=$ $\{7,8,9,10\}$.
27. (a) $A \cup B$
(b) $A \cap B$

Solution. (a) The union of A and B is the set containing the elements of both sets,

$$
A \cup B=\{1,2,3,4,5,6,7,8\}
$$

(b) The intersection of A and B is the set containing the elements common to both sets,

$$
A \cap B=\{2,4,6\}
$$

29. (a) $A \cup C$
(b) $A \cap C$

Solution. (a) The union of A and C is the set containing the elements of both sets,

$$
A \cup C=\{1,2,3,4,5,6,7,8,9,10\} .
$$

(b) The intersection of A and B is the set containing the elements common to both sets,

$$
A \cap C=\{7\}
$$

49. Express the inequality in interval notation, and then graph the corresponding interval.

$$
-5 \leq x<-2
$$

Solution. The inequality $-5 \leq x<-2$ represents the half-open interval that includes the endpoint -5 , but not the endpoint -2 and so can be written $[-5,2)$.
63. Find the distance between the given numbers.
(a) 2 and 17
(b) -3 and 21
(c) $\frac{11}{8}$ and $-\frac{3}{8}$.

Solution. (a) The distance between 2 and 17 is given by

$$
\mathrm{d}(2,17)=|2-17|=|-15|=15
$$

(b) The distance between -3 and 21 is giveb by

$$
\mathrm{d}(-3,21)=|-3-21|=|-24|=24 .
$$

(c) The distance between $11 / 8$ and $-3 / 8$ is given by

$$
\mathrm{d}\left(\frac{11}{8},-\frac{3}{8}\right)=\left|\frac{11}{8}-\left(-\frac{3}{8}\right)\right|=\left|\frac{11+3}{8}\right|=14 / 8=7 / 4 .
$$

A. 3

1. Using exponential notation, we can write the product $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$ as \qquad .

Solution. This is the product of 5 with itself 6 times, we we can write it as 5^{6}.
3. When we multiply two powers with the same base, we \qquad the exponents. So $3^{4} \cdot 3^{5}=$ \qquad —.
Solution. When we multiply two powers with the same base, we add the exponents, so

$$
3^{4} \cdot 3^{5}=3^{4+5}=3^{9}
$$

6. Express the following without using exponents.
(a) $2^{-1}=$ \qquad
(b) $2^{-3}=$ \qquad
(c) $\left(\frac{1}{2}\right)^{-1}=$ \qquad -.

Solution. When a number is raised to a negative exponent, this is the same as raising its reciprocal to the absolute value of the exponent. Hence the solutions are
(a) $2^{-1}=\left(\frac{1}{2}\right)^{1}=\frac{1}{2}$,
(b) $2^{-3}=\left(\frac{1}{2}\right)^{3}=\frac{1}{2^{3}}=\frac{1}{8}$,
(c) $\left(\frac{1}{2}\right)^{-1}=2^{1}=2$.
$29 \& 33$: Use the rules of exponents to write each expression in as simple a form as possible.
29. $\frac{7^{5} \cdot 7^{-3}}{7^{2}}$.

Solution. Simplifying the numerator, we add the exponents in the product to obtain $7^{5} \cdot 7^{-3}=$ $7^{5+(-3)}=7^{2}$. Therefore the ratio reduces to

$$
\frac{7^{5} \cdot 7^{-3}}{7^{2}}=\frac{7^{2}}{7^{2}}=1
$$

33. $\left(\frac{1}{2}\right)^{4}\left(\frac{5}{2}\right)^{-2}$.

Solution. Expanding each ratio in turn we have

$$
\left(\frac{1}{2}\right)^{4}=\frac{1}{2^{4}}=\frac{1}{16}
$$

and

$$
\left(\frac{5}{2}\right)^{-2}=\left(\frac{2}{5}\right)^{2}=\frac{2^{2}}{5^{2}}=\frac{4}{25}
$$

Combining these calculations we obtain

$$
\left(\frac{1}{2}\right)^{4}\left(\frac{5}{2}\right)^{-2}=\frac{1}{16} \frac{4}{25}=\frac{1}{4 \cdot 25}=\frac{1}{100}
$$

52. Simplify the expression, and eliminate any negative exponents:

$$
\left(\frac{-2 x^{2}}{y^{3}}\right)^{3}
$$

Solution. Using the rules of exponentiation we have

$$
\left(\frac{-2 x^{2}}{y^{3}}\right)^{3}=\frac{(-2)^{3}\left(x^{2}\right)^{3}}{\left(y^{3}\right)^{3}}=\frac{-8 x^{2 \cdot 3}}{y^{3 \cdot 3}}=\frac{-8 x^{6}}{y^{9}}
$$

A. 4

1. Using exponential notation, we can write $\sqrt[3]{5}$ as \qquad -.

Solution. The third root of $5, \sqrt[3]{5}$, can be written using rational exponents as $5^{1 / 3}$.
4. Explain what $4^{3 / 2}$ means, and then calculate $4^{3 / 2}$ in two different ways:

$$
4^{3 / 2}=\left(4^{1 / 2}\right)^{\square}=\square \quad 4^{3 / 2}=\left(4^{3}\right)^{\square}=
$$

Solution. The symbol $4^{3 / 2}$ means the cube of the square root of 4 , written $(\sqrt{4})^{3}$, or, equivalently, the square root of the cube of 4 , written $\sqrt{4^{3}}$. Using exponential notation, these can be written as $\left(4^{1 / 2}\right)^{3}$ and $\left(4^{3}\right)^{1 / 2}$, respectively.
17. Evaluate the expressions
(a) $\sqrt{\frac{4}{9}}$,
(b) $\sqrt[4]{256}$,
(c) $\sqrt[6]{\frac{1}{64}}$.

Solution. (a) Using the rules of exponents, we have

$$
\sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{3}
$$

(b) First we observe that $256=2^{8}$. Then using the rules of exponents, it follows that

$$
\sqrt[4]{256}=\sqrt[4]{2^{8}}=2^{8 / 4}=2^{2}=4
$$

(c) Here we note that $64=2^{6}$ so we obtain

$$
\sqrt[6]{\frac{1}{64}}=\sqrt[6]{2^{6}}=\left(2^{6}\right)^{1 / 6}=2^{6 / 6}=2^{1}=2
$$

$23,25, \& 33$: simplify the expression and eliminate any negative exponent(s). Assume that all letters denote positive numbers.
23. $x^{3 / 4} x^{5 / 4}$.

Solution. Using the rules of exponents, we have

$$
x^{3 / 4} \cdot x^{5 / 4}=x^{3 / 4+5 / 4}=x^{8 / 4}=x^{2} .
$$

25. $(4 b)^{1 / 2}$.

Solution. Again using the rules of exponents, we obtain

$$
(4 b)^{1 / 2}=\sqrt{4 b}=\sqrt{4} \sqrt{b}=2 \sqrt{b}
$$

33. $\left(\frac{2 q^{3 / 4}}{r^{3 / 2}}\right)^{-4}$.

Solution. Using the rules of exponents

$$
\left(\frac{2 q^{3 / 4}}{r^{3 / 2}}\right)^{-4}=\left(\frac{r^{3 / 2}}{2 q^{3 / 4}}\right)^{4}=\frac{\left(r^{3 / 2}\right)^{4}}{\left(2 q^{3 / 4}\right)^{4}}=\frac{r^{(3 / 2) \cdot 4}}{2^{4} q^{(3 / 4) \cdot 4}}=\frac{r^{6}}{16 q^{3}} .
$$

41. Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.

$$
(5 \sqrt[3]{x})(2 \sqrt[4]{x})
$$

Solution. Using the rules for exponents,

$$
(5 \sqrt[3]{x})(2 \sqrt[4]{x})=10 x^{1 / 3} x^{1 / 4}=10 x^{1 / 3+1 / 4}=10 x^{4 / 12+3 / 12}=10 x^{7 / 12}
$$

B. 1

1. To add expressions, we add \qquad terms. So

$$
(3 a+2 b+4)+(a-b+1)=
$$

\qquad
Solution. To add expressions, we add like terms, so

$$
(3 a+2 b+4)+(a-b+1)=4 a+b+5
$$

2. To subtract expressions, we substract \qquad terms. So

$$
(2 x y+9 b+c+10)-(x y+b+6 c+8)=
$$

\qquad
Solution. To subtract expressions, we subtract like terms, so

$$
(2 x y+9 b+c+10)-(x y+b+6 c+8)=x y+8 b-5 c+2 .
$$

4. Explain how we multiply two binomials, then perform the following multiplication: $(x+2)(x+3)=$ \qquad .

Solution. When mutliplying binomials, we use FOIL to expand the expression. Hence

$$
(x+2)(x+3)=x^{2}+3 x+2 x+6=x^{2}+(3+2) x+6=x^{2}+5 x+6
$$

5. The Special Product Formula for the "square of a sum" is

$$
(A+B)^{2}=\ldots \text { So }(2 x+3)^{2}=\text {. } \text {. }
$$

Solution. The Special Product Formula for the "square of a sum" is $(A+B)^{2}=A^{2}+2 A B+$ B^{2}, so

$$
(2 x+3)^{2}=(2 x)^{2}+2(2 x)(3)+3^{2}=4 x^{2}+12 x+9
$$

6. The Special Product Formula for the "sum and difference of the same terms" is $(A+B)(A-B)=$ \qquad . So $(5+x)(5-x)=$ \qquad
Solution. The Special Product Formula for the "sum and difference of the same terms" is $(A+B)(A-B)=A^{2}-B^{2}$, so

$$
(5+x)(5-x)=5^{2}-x^{2}=25-x^{2}
$$

11. Consider the expression $2 a x-10 a+1$.
(a) What are the terms of the expression?
(b) Find the value of the expression if a is $-1, b$ is $4, x$ is -2 , and y is 3 .

Solution. (a) The terms of the expression are $2 a x, 10 a$, and 1.
(b) The value of the expression is

$$
2 a x-10 a+1=2(-1)(-2)-10(-1)+1=4+10+1=15
$$

$15 \& 17$: Find the sum or difference.
15. $(12 x-7)-(5 x-12)$.

Solution. The difference is

$$
(12 x-7)-(5 x-12)=12 x-5 x+12-7=(12-5) x+5=7 x+5
$$

17. $\left(4 x^{2}+2 x\right)+\left(3 x^{2}-5 x+6\right)$.

Solution. The sum is
$\left(4 x^{2}+2 x\right)+\left(3 x^{2}-5 x+6\right)=4 x^{2}+3 x^{2}+2 x-5 x+6=(4+3) x^{2}+(2-5) x+6=7 x^{2}-3 x+6$.
24. Multiply the two expressions using the Distributive Property: $(a+b)(x-y)$.

Solution. Using the Distributive Property on the left, we have

$$
(a+b)(x-y)=(a+b) x-(a+b) y
$$

The right hand side of this equation can be expanded again by using the distributive property on the right to obtain

$$
(a+b) x-(a+b) y=a x+b x-a y+b y
$$

Similarly, one can start with distribution on the right and then apply it again on the right to obtain the same answer,

$$
(a+b)(x-y)=a(x-y)+b(x-y)=a x-a y+b x-b y
$$

29. Multiply the algebraic expressions using the FOIL method and simplify: $(r-3)(r+5)$.

Solution. Using FOIL, we have

$$
(r-3)(r+5)=r^{2}+5 r-3 r-15=r^{2}+(5-3) r-15=r^{2}+2 r-15
$$

35, 36, \& 45: Multiply the algebraic expressions using a Special Product Formula and simplify.
35. $(x+3)^{2}$.

Solution. Using the square of a sum formula, we have

$$
(x+3)^{2}=x^{2}+6 x+9
$$

36. $(x-2)^{2}$.

Solution. Using the square of a difference formula, we have

$$
(x-2)^{2}=x^{2}-2 x+4
$$

45. $(x+5)(x-5)$.

Solution. Using the difference of squares formula, we have

$$
(x+5)(x-5)=x^{2}-25
$$

61. Find the product of the polynomials: $(x+2)\left(x^{2}+2 x+3\right)$.

Solution. By distribution on the left, we have

$$
(x+2)\left(x^{2}+2 x+3\right)=(x+2) x^{2}+(x+2) 2 x+(x+2) 3 .
$$

Then applying distribution on the right,

$$
\begin{aligned}
(x+2) x^{2}+(x+2) 2 x+(x+2) 3 & =x^{3}+2 x^{2}+2 x^{2}+4 x+3 x+6 \\
& =x^{3}+(2+2) x^{2}+(4+3) x+6 \\
& =x^{3}+4 x^{2}+7 x+6 .
\end{aligned}
$$

B. 2

1. Consider the polynomial $2 x^{5}+6 x^{4}+4 x^{3}$.
(a) How many terms does this polynomial have?
(b) List the terms.
(c) What factor is common to each term?
(d) Factor the polynomial: $2 x^{5}+6 x^{4}+4 x^{3}=$

Solution. (a) This polynomial has three terms.
(b) The terms are $2 x^{5}, 6 x^{4}$, and $4 x^{3}$.
(c) The factor common to each is $2 x^{3}$.
(d) The polynomial factors as

$$
\begin{aligned}
2 x^{5}+6 x^{4}+4 x^{3} & =2 x^{3}\left(x^{2}+3 x+2\right) \\
& =2 x^{3}(x+2)(x+1)
\end{aligned}
$$

2. To factor the trinomial $x^{2}+7 x+10$, we look for two integers whose product is \qquad and whose sum is \qquad . These integers are \qquad and \qquad , so the trinomial factors as
\qquad .

Solution. To factor the trinomial $x^{2}+7 x+10$, we look for two integers whose product is 10 and whose sum is 7 . These integers are 2 and 5 , so the trinomial factors as $(x+2)(x+5)$.
5. Factor $5 a-20$.

Solution. The only factor common to $5 a$ and 20 is 5 , so we have the factorization

$$
5 a-20=5(a-4)
$$

7. Factor $30 x^{3}+15 x^{4}$.

Solution. Since $30=2 \cdot 15$, and both terms contain an x^{3}, we have the factorization

$$
30 x^{3}+15 x^{4}=15 x^{3}(2+x) .
$$

9. Factor $-2 x^{3}+16 x$.

Solution. Factoring a $-2 x$ out of both terms, we have

$$
-2 x^{3}+16 x=-2 x\left(x^{2}-8\right) .
$$

21. Factor the trinomial $y^{2}-8 y+15$.

Solution. Here we need two integers that multiply to 15 and add to -8 . These integers are -5 and -3 , so we have

$$
y^{2}-8 y+15=(y-5)(y-3)
$$

25. Factor the trinomial $5 x^{2}-7 x-6$.

Solution. Here, since we the leading coefficient is not 1, we need to consider a factorization of the form $(a x+r)(b x+s)=a b x+(a s+b r) x+r s$. We must have $a b=5$, so our factorization must look like $(5 x+r)(x+s)$. Hence we need only decide on integers r, s such that $5 s+r=-7$ and $r s=-6$. Choosing $s=-2$ and $r=3$, we see that $5(-2)+3=-7$ and $(-2) 3=-6$, so our factorization is

$$
5 x^{2}-7 x-6=(5 x+3)(x-2)
$$

