MATH 111: HOMEWORK 08 SOLUTIONS

BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA

4.1

16. Find the given logarithm.

- (a) $\log_9(1)$,
- $(b) \log_9(9^8),$
- $(c) \log_9(9).$

Solution. (a) Since $1 = 9^0$, we have $\log_9(1) = 0$.

- (b) Here $\log_9(9^8) = 8$.
- (c) Here $\log_9(9^1) = 1$.

18. Find the given logarithm.

- (a) $\log_7(1)$, (b) $\log_7(49)$,
- (c) $\log_7(\frac{1}{49})$.
- (0) 1087(49)

Solution. (a) Since $7^0 = 1$ we have $\log_7(1)$.

- (b) If we write $49 = 7^2$, then we have $\log_7(49) = \log_7(7^2) = 2$.
- (c) Using the laws of logarithms we have

$$\log_7\left(\frac{1}{49}\right) = \log_7(1) - \log_7(49) = 0 - 2 = -2.$$

24. Find the given logarithms

(a) $\log_3\left(\frac{1}{27}\right)$, (b) $log_{10}(\sqrt{10})$, (c) $\log_5(0.2)$.

Date: May 22, 2013.

Solution. (a) If we write $27 = 3^3$, then by the laws of logarithms we have

$$\log_3\left(\frac{1}{27}\right) = \log_3(1) - \log_3(27) = 0 - \log_3(3^3) = -3.$$

(b) If we write $\sqrt{10} = 10^{\frac{1}{2}}$ we have

$$log_{10}(\sqrt{10}) = \log_{10}(10^{\frac{1}{2}} = \frac{1}{2})$$

(c) First, write $0.2 = \frac{2}{10} = \frac{1}{5}$ so that by the laws of logarithms

$$\log_5(0.2) = \log_5\left(\frac{1}{5}\right) = \log_5(1) - \log_5(5) = 0 - 1 = -1.$$

32. Express the equation in exponential form.

- (a) $\log_3(81) = 4$,
- (b) $\log_2\left(\frac{1}{8}\right)$.
- Solution. (a) The equation $\log_3(81) = 4$ is true if and only if $3^4 = 81$, which is the exponential form.
- (b) The equation $\log_2\left(\frac{1}{8}\right) = -3$ is true if and only if $2^{-3} = \frac{1}{8}$.

34. Express the equation in logarithmic form.

(a) $10^3 = 1000$, (b) $81^{1/2} = 9$.

Solution. (a) The equation $10^3 = 1000$ tells us that $\log_{10}(1000) = 3$. (b) The equation $81^{1/2} = 9$ tells us that $\log_{81}(9) = \frac{1}{2}$.

4.2

- **10.** Evaluate the given expression.
- (a) $\log_{10}(4) + \log_{10}(25),$ (b) $\log_2(160) - \log_2 5,$ (c) $-\frac{1}{2}\log_2(64).$

Solution. (a) Using the law for multiplication we have

 $\log_{10}(4) + \log_{10}(25) = \log_{10}(4 \cdot 25) = \log_{10}(100) = \log_{10}(10^2) = 2.$

(b) Using the law for division we have

$$\log_2(160) - \log_2 5 = \log_2\left(\frac{160}{5}\right) = \log_2(32) = \log_2(2^5) = 5.$$

(c) Using the law for exponents we have

$$-\frac{1}{2}\log_2(64) = -\log_2(64^{1/2}) = -\log_2((2^6)^{1/2}) = -\log_2(2^{6/2}) = -\log_2(2^3) = -3$$

12. Use the laws of logarithms to expand the given expression.
(a) log₅ (x/2),
(b) log₃(x√y).

Solution. (a) Using the law for division we have

$$\log_5\left(\frac{x}{2}\right) = \log_5(x) - \log_5(2).$$

(b) Using the law for products and then the law for exponents we have

$$\log_3(x\sqrt{y}) = \log_3(xy^{1/2}) = \log_3(x) + \log_3(y^{1/2}) = \log_3(x) + \frac{\log_3(y)}{2}.$$

14. Use the laws of logarithms to expand the given expression.

- $(a) \log_3(5a),$
- (b) $\log_5\left(\frac{2a}{b}\right)$.

Solution. (a) Using the law for products we have

$$\log_3(5a) = \log_3(5) + \log_3(a).$$

(b) Using the law for division, then the law for products we have

$$\log_5\left(\frac{2a}{b}\right) = \log_5(2a) - \log_5(b) = \log_5(2) + \log_5(a) - \log_5(b).$$

16. Use the laws of logarithms to expand the given expression.

(a) $\log_{10}(w^2 z)^{10}$ (b) $\log_7\left(\frac{\sqrt[3]{wz}}{x}\right)$

Solution. Using the laws of logarithms we have

(a)

$$\log_{10}(w^2 z)^{10} = (\log_{10}(w^2) + \log_{10}(z))^{10} = (2\log_{10}(w) + \log_{10}(z))^{10}.$$

(b)

$$\log_{7}\left(\frac{\sqrt[3]{wz}}{x}\right) = \log_{7}\left(\frac{(wz)^{1/3}}{x}\right)$$
$$= \log_{7}((wz)^{1/3}) - \log_{7}(x)$$
$$= \frac{\log_{7}(wz)}{3} - \log_{7}(x)$$
$$= \frac{\log_{7}(w) + \log_{7}(z)}{3} - \log_{7}(x)$$
$$= \frac{\log_{7}(w)}{3} + \frac{\log_{7}(z)}{3} - \log_{7}(x)$$

20. Use the laws of logarithms to combine the given expression.

(a) $4\log_2(x) - \frac{1}{3}\log_2(x^2 + 1)$. (b) $\log_{10}(5) + 2\log_{10}(x) + 3\log_{10}(x^2 + 5)$.

Solution. Using the laws of logarithms we have (a)

$$4\log_2(x) - \frac{1}{3}\log_2(x^2 + 1) = \log_2(x^4) - \log_2(\sqrt[3]{x^2 + 1})$$
$$= \log_2(\frac{x^4}{\sqrt[3]{x^2 + 1}})$$

(b)

$$\log_{10}(5) + 2\log_{10}(x) + 3\log_{10}(x^2 + 5) = \log_{10}(5) + \log_{10}(x^2) + \log_{10}((x^2 + 5)^3)$$
$$= \log_{10}(5x^2(x^2 + 5)^3)$$
$$= \log_{10}(5x^2(x^6 + 15x^4 + 75x^2 + 125))$$
$$= \log_{10}(5x^8 + 75x^6 + 375x^4 + 625x^2).$$

22. Use the laws of logarithms to combine the given expression.

(a) $2\log_8(x+1) + 2\log_8(x-1)$ (b) $\log_5(x^2-1) - \log_5(x-1)$.

Solution. Using the laws of logarithms we have

(a)

$$2\log_8(x+1) + 2\log_8(x-1) = 2(\log_8(x+1) + \log_8(x-1))$$

= 2(log_8((x+1)(x-1)))
= 2(log_8(x^2-1))
= log_8((x^2-1)^2)
= log_8(x^4-2x^2+1).

(b)

$$\log_5(x^2 - 1) - \log_5(x - 1) = \log_5\left(\frac{x^2 - 1}{x - 1}\right) = \log_5\left(\frac{(x + 1)(x - 1)}{x - 1}\right) = \log_5(x + 1).$$

34. Use the change of base formula and a calculator to evaluate the logarithm.
(a) log₃(16),
(b) log₆(92).

Solution. Using the change of base formula and a calculator we have (a)

$$\log_3(16) = \frac{\log_{10}(16)}{\log_{10}(3)} \approx 2.523719.$$

(b)

$$\log_6(92) = \frac{\log_{10}(92)}{\log_{10}(6)} \approx 2.523658.$$

36. Use the change of base formula and a calculator to evaluate the logarithm.
(a) log₄(125),
(b) log₁₂(2.5).

Solution. Using the change of base formula and a calculator we have (a)

$$\log_4(125) = \frac{\log_{10}(125)}{\log_{10}(4)} \approx 3.482892.$$

(b)

$$\log_{12}(2.5) = \frac{\log_{10}(2.5)}{\log_{10}(12)} \approx 0.368743.$$