MATH 111: HOMEWORK 08 SOLUTIONS

BLAKE FARMAN

UNIVERSITY OF SOUTH CAROLINA

4.1

16. Find the given logarithm.
(a) $\log _{9}(1)$,
(b) $\log _{9}\left(9^{8}\right)$,
(c) $\log _{9}(9)$.

Solution. (a) Since $1=9^{0}$, we have $\log _{9}(1)=0$.
(b) Here $\log _{9}\left(9^{8}\right)=8$.
(c) Here $\log _{9}\left(9^{1}\right)=1$.
18. Find the given logarithm.
(a) $\log _{7}(1)$,
(b) $\log _{7}(49)$,
(c) $\log _{7}\left(\frac{1}{49}\right)$.

Solution. (a) Since $7^{0}=1$ we have $\log _{7}(1)$.
(b) If we write $49=7^{2}$, then we have $\log _{7}(49)=\log _{7}\left(7^{2}\right)=2$.
(c) Using the laws of logarithms we have

$$
\log _{7}\left(\frac{1}{49}\right)=\log _{7}(1)-\log _{7}(49)=0-2=-2
$$

24. Find the given logarithms
(a) $\log _{3}\left(\frac{1}{27}\right)$,
(b) $\log _{10}(\sqrt{10})$,
(c) $\log _{5}(0.2)$.

Solution. (a) If we write $27=3^{3}$, then by the laws of logarithms we have

$$
\log _{3}\left(\frac{1}{27}\right)=\log _{3}(1)-\log _{3}(27)=0-\log _{3}\left(3^{3}\right)=-3 .
$$

(b) If we write $\sqrt{10}=10^{\frac{1}{2}}$ we have

$$
\log _{10}(\sqrt{10})=\log _{10}\left(10^{\frac{1}{2}}=\frac{1}{2} .\right.
$$

(c) First, write $0.2=\frac{2}{10}=\frac{1}{5}$ so that by the laws of logarithms

$$
\log _{5}(0.2)=\log _{5}\left(\frac{1}{5}\right)=\log _{5}(1)-\log _{5}(5)=0-1=-1 .
$$

32. Express the equation in exponential form.
(a) $\log _{3}(81)=4$,
(b) $\log _{2}\left(\frac{1}{8}\right)$.

Solution. (a) The equation $\log _{3}(81)=4$ is true if and only if $3^{4}=81$, which is the exponential form.
(b) The equation $\log _{2}\left(\frac{1}{8}\right)=-3$ is true if and only if $2^{-3}=\frac{1}{8}$.
34. Express the equation in logarithmic form.
(a) $10^{3}=1000$,
(b) $81^{1 / 2}=9$.

Solution. (a) The equation $10^{3}=1000$ tells us that $\log _{10}(1000)=3$.
(b) The equation $81^{1 / 2}=9$ tells us that $\log _{81}(9)=\frac{1}{2}$.

4.2

10. Evaluate the given expression.
(a) $\log _{10}(4)+\log _{10}(25)$,
(b) $\log _{2}(160)-\log _{2} 5$,
(c) $-\frac{1}{2} \log _{2}(64)$.

Solution. (a) Using the law for multiplication we have

$$
\log _{10}(4)+\log _{10}(25)=\log _{10}(4 \cdot 25)=\log _{10}(100)=\log _{10}\left(10^{2}\right)=2
$$

(b) Using the law for division we have

$$
\log _{2}(160)-\log _{2} 5=\log _{2}\left(\frac{160}{5}\right)=\log _{2}(32)=\log _{2}\left(2^{5}\right)=5
$$

(c) Using the law for exponents we have

$$
-\frac{1}{2} \log _{2}(64)=-\log _{2}\left(64^{1 / 2}\right)=-\log _{2}\left(\left(2^{6}\right)^{1 / 2}\right)=-\log _{2}\left(2^{6 / 2}\right)=-\log _{2}\left(2^{3}\right)=-3
$$

12. Use the laws of logarithms to expand the given expression.
(a) $\log _{5}\left(\frac{x}{2}\right)$,
(b) $\log _{3}(x \sqrt{y})$.

Solution. (a) Using the law for division we have

$$
\log _{5}\left(\frac{x}{2}\right)=\log _{5}(x)-\log _{5}(2)
$$

(b) Using the law for products and then the law for exponents we have

$$
\log _{3}(x \sqrt{y})=\log _{3}\left(x y^{1 / 2}\right)=\log _{3}(x)+\log _{3}\left(y^{1 / 2}\right)=\log _{3}(x)+\frac{\log _{3}(y)}{2}
$$

14. Use the laws of logarithms to expand the given expression.
(a) $\log _{3}(5 a)$,
(b) $\log _{5}\left(\frac{2 a}{b}\right)$.

Solution. (a) Using the law for products we have

$$
\log _{3}(5 a)=\log _{3}(5)+\log _{3}(a)
$$

(b) Using the law for division, then the law for products we have

$$
\log _{5}\left(\frac{2 a}{b}\right)=\log _{5}(2 a)-\log _{5}(b)=\log _{5}(2)+\log _{5}(a)-\log _{5}(b)
$$

16. Use the laws of logarithms to expand the given expression.
(a) $\log _{10}\left(w^{2} z\right)^{10}$
(b) $\log _{7}\left(\frac{\sqrt[3]{w z}}{x}\right)$

Solution. Using the laws of logarithms we have
(a)

$$
\log _{10}\left(w^{2} z\right)^{10}=\left(\log _{10}\left(w^{2}\right)+\log _{10}(z)\right)^{10}=\left(2 \log _{10}(w)+\log _{10}(z)\right)^{10}
$$

(b)

$$
\begin{aligned}
\log _{7}\left(\frac{\sqrt[3]{w z}}{x}\right) & =\log _{7}\left(\frac{(w z)^{1 / 3}}{x}\right) \\
& =\log _{7}\left((w z)^{1 / 3}\right)-\log _{7}(x) \\
& =\frac{\log _{7}(w z)}{3}-\log _{7}(x) \\
& =\frac{\log _{7}(w)+\log _{7}(z)}{3}-\log _{7}(x) \\
& =\frac{\log _{7}(w)}{3}+\frac{\log _{7}(z)}{3}-\log _{7}(x)
\end{aligned}
$$

20. Use the laws of logarithms to combine the given expression.
(a) $4 \log _{2}(x)-\frac{1}{3} \log _{2}\left(x^{2}+1\right)$.
(b) $\log _{10}(5)+2 \log _{10}(x)+3 \log _{10}\left(x^{2}+5\right)$.

Solution. Using the laws of logarithms we have
(a)

$$
\begin{aligned}
4 \log _{2}(x)-\frac{1}{3} \log _{2}\left(x^{2}+1\right) & =\log _{2}\left(x^{4}\right)-\log _{2}\left(\sqrt[3]{x^{2}+1}\right) \\
& =\log _{2}\left(\frac{x^{4}}{\sqrt[3]{x^{2}+1}}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\log _{10}(5)+2 \log _{10}(x)+3 \log _{10}\left(x^{2}+5\right) & =\log _{10}(5)+\log _{10}\left(x^{2}\right)+\log _{10}\left(\left(x^{2}+5\right)^{3}\right) \\
& =\log _{10}\left(5 x^{2}\left(x^{2}+5\right)^{3}\right) \\
& =\log _{10}\left(5 x^{2}\left(x^{6}+15 x^{4}+75 x^{2}+125\right)\right) \\
& =\log _{10}\left(5 x^{8}+75 x^{6}+375 x^{4}+625 x^{2}\right) .
\end{aligned}
$$

22. Use the laws of logarithms to combine the given expression.
(a) $2 \log _{8}(x+1)+2 \log _{8}(x-1)$
(b) $\log _{5}\left(x^{2}-1\right)-\log _{5}(x-1)$.

Solution. Using the laws of logarithms we have
(a)

$$
\begin{aligned}
2 \log _{8}(x+1)+2 \log _{8}(x-1) & =2\left(\log _{8}(x+1)+\log _{8}(x-1)\right) \\
& =2\left(\log _{8}((x+1)(x-1))\right) \\
& =2\left(\log _{8}\left(x^{2}-1\right)\right) \\
& =\log _{8}\left(\left(x^{2}-1\right)^{2}\right) \\
& =\log _{8}\left(x^{4}-2 x^{2}+1\right) .
\end{aligned}
$$

(b)

$$
\log _{5}\left(x^{2}-1\right)-\log _{5}(x-1)=\log _{5}\left(\frac{x^{2}-1}{x-1}\right)=\log _{5}\left(\frac{(x+1)(x-1)}{x-1}\right)=\log _{5}(x+1)
$$

34. Use the change of base formula and a calculator to evaluate the logarithm.
(a) $\log _{3}(16)$,
(b) $\log _{6}(92)$.

Solution. Using the change of base formula and a calculator we have
(a)

$$
\log _{3}(16)=\frac{\log _{10}(16)}{\log _{10}(3)} \approx 2.523719
$$

(b)

$$
\log _{6}(92)=\frac{\log _{10}(92)}{\log _{10}(6)} \approx 2.523658
$$

36. Use the change of base formula and a calculator to evaluate the logarithm.
(a) $\log _{4}(125)$,
(b) $\log _{12}(2.5)$.

Solution. Using the change of base formula and a calculator we have
(a)

$$
\log _{4}(125)=\frac{\log _{10}(125)}{\log _{10}(4)} \approx 3.482892
$$

(b)

$$
\log _{12}(2.5)=\frac{\log _{10}(2.5)}{\log _{10}(12)} \approx 0.368743
$$

