MATH 142: EXAM 01

BLAKE FARMAN
UNIVERSITY OF SOUTH CAROLINA

> Answer the questions in the spaces provided on the question sheets and turn them in at the end of the class period.
> Unless otherwise stated, all supporting work is required. Unsupported or otherwise mysterious answers will not receive credit.
> You may not use a calculator or any other electronic device, including cell phones, smart watches, etc. By writing your name on the line below, you indicate that you have read and understand these directions.
> It is advised, although not required, that you check your answers.

Name: \qquad

Problem	Points Earned	Points Possible
1		20
2		20
3		20
4		20
5		20
Total		100

1. Problems

For each of the following problems, decide which method of integration is appropriate and compute the given integrals.
$1\left(20\right.$ Points). Compute $\int \cos ^{2}(\theta) \sin ^{2}(\theta) \mathrm{d} \theta$.
Solution. We use the identities

$$
\sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2} \text { and } \cos ^{2}(\theta)=\frac{1+\cos (\theta)}{2}
$$

to rewrite the integrand as

$$
\begin{aligned}
\sin ^{2}(\theta) \cos ^{2}(\theta) & =\left(\frac{1-\cos (2 \theta)}{2}\right)\left(\frac{1+\cos (2 \theta)}{2}\right) \\
& =\frac{1-\cos ^{2}(2 \theta)}{4} \\
& =\frac{1}{4}\left(1-\left(\frac{1+\cos (4 \theta)}{2}\right)\right) \\
& =\frac{1}{4}-\frac{1}{8}-\frac{\cos (4 \theta)}{8} \\
& =\frac{1}{8}-\frac{\cos (4 \theta)}{8} \\
& =\frac{1}{8}(1-\cos (4 \theta))
\end{aligned}
$$

Therefore

$$
\int \sin ^{2}(\theta) \cos ^{2}(\theta) \mathrm{d} \theta=\frac{1}{8}\left(\int \mathrm{~d} \theta-\int \cos (4 \theta) \mathrm{d} \theta\right)=\frac{1}{8}\left(\theta-\frac{\sin (4 \theta)}{4}\right)+C
$$

2. Compute $\int e^{x} \cos (x) \mathrm{d} x$.

Solution. We use integration by parts twice. For the first application, we take

$$
\begin{array}{ll}
u=e^{x} & v=\sin (x) \\
\mathrm{d} u=e^{x} \mathrm{~d} x & \mathrm{~d} v=\cos (x) \mathrm{d} x
\end{array}
$$

to get

$$
\int e^{x} \cos (x) \mathrm{d} x=e^{x} \sin (x)-\int e^{x} \sin (x) \mathrm{d} x
$$

Now we apply integration by parts to $\int e^{x} \sin (x) \mathrm{d} x$ using

$$
\begin{array}{ll}
u=e^{x} & v=-\cos (x) \\
\mathrm{d} u=e^{x} \mathrm{~d} x & \mathrm{~d} v=\sin (x) \mathrm{d} x
\end{array}
$$

to get

$$
\int e^{x} \sin (x) \mathrm{d} x=-e^{x} \cos (x)-\int e^{x}(-\cos (x)) \mathrm{d} x=-e^{x} \cos (x)+\int e^{x} \cos (x) \mathrm{d} x
$$

We note that the this last integral is exactly the integral we started with. So, we substitute this into the original equation to find

$$
\begin{aligned}
\int e^{x} \cos (x) \mathrm{d} x & =e^{x} \sin (x)-\left(-e^{x} \cos (x)+\int e^{x} \cos (x) \mathrm{d} x\right) \\
& =e^{x} \sin (x)+e^{x} \cos (x)-\int e^{x} \cos (x) \mathrm{d} x
\end{aligned}
$$

then add $\int e^{x} \cos (x) \mathrm{d} x$ to both sides to obtain

$$
2 \int e^{x} \cos (x) \mathrm{d} x=e^{x} \sin (x)+e^{x} \cos (x) .
$$

Dividing both sides of this equation by two and adding a constant of integration, we have

$$
\int e^{x} \cos (x)=\frac{e^{x} \sin (x)+e^{x} \cos (x)}{2}+C
$$

3 (20 Points). Compute $\int \frac{\mathrm{d} x}{\sqrt{x^{2}-9}}$.
Solution. We recall that

$$
\sec ^{2}(\theta)-1=\frac{1}{\cos ^{2}(\theta)}-\frac{\cos ^{2}(\theta)}{\cos ^{2}(\theta)}=\frac{1-\cos ^{2}(\theta)}{\cos ^{2}(\theta)}=\frac{\sin ^{2}(\theta)}{\cos ^{2}(\theta)}=\tan ^{2}(\theta)
$$

Since the integrand is only real valued for $3<x$, we can make the trigonometric substitution $x=3 \sec (\theta)$ for $0<\theta<\pi / 2$. As tangent is positive for these values of θ, the denominator becomes

$$
\sqrt{x^{2}-9}=\sqrt{9 \sec ^{2}(\theta)-9}=\sqrt{9\left(\sec ^{2}(\theta)-1\right)}=\sqrt{9 \tan ^{2}(\theta)}=3 \tan (\theta)
$$

We compute

$$
\mathrm{d} x=3 \tan (\theta) \sec (\theta) \mathrm{d} \theta
$$

and so

$$
\int \frac{\mathrm{d} x}{\sqrt{x^{2}-9}}=\int \frac{3 \tan (\theta) \sec (\theta) \mathrm{d} \theta}{3 \tan (\theta)}=\int \sec (\theta) \mathrm{d} \theta=\ln (\sec (\theta)+\tan (\theta))+C
$$

since $0<\theta<\pi / 2$ implies that both $\sec (\theta)$ and $\tan (\theta)$ are positive.
To get to our answer in terms of x we note that

$$
\frac{x}{3}=\sec (\theta)=\frac{1}{\cos (\theta)}
$$

so we look at the right triangle

to see that $\tan (\theta)=\frac{\sqrt{x^{2}-9}}{3}$. Therefore

$$
\int \frac{\mathrm{d} x}{\sqrt{x^{2}-9}}=\ln \left(\frac{x}{3}+\frac{\sqrt{x^{2}-9}}{3}\right)+C
$$

4 (20 Points). Compute

$$
\int \frac{6 x^{2}-2}{(x+1)(x-1)\left(x^{2}+1\right)} \mathrm{d} x
$$

Solution. First we set up the equation

$$
\frac{6 x^{2}-2}{(x+1)(x-1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+1}
$$

then multiply both sides $x+1)(x-1)\left(x^{2}+1\right)$ to get

$$
\begin{aligned}
6 x^{2}-2 & =A(x-1)\left(x^{2}+1\right)+B(x+1)\left(x^{2}+1\right)+(C x+D)\left(x^{2}-1\right) \\
& =A\left(x^{3}-x^{2}+x-1\right)+B\left(x^{3}+x^{2}+x+1\right)+C x^{3}+D x^{2}-C x-D \\
& =(A+B+C) x^{3}+(-A+B+D) x^{2}+(A+B-C) x+(-A+B-D)
\end{aligned}
$$

Equating the coefficients gives the system

$$
\begin{aligned}
0 & =A+B+C \\
6 & =-A+B+D \\
0 & =A+B-C \\
-2 & =-A+B-D
\end{aligned}
$$

Adding the first and third equations together gives $2 A+2 B=0$, which is equivalent to $A+B=0$. This implies that $B=-A$ and hence $C=0$. Subtracting the fourth equation from the second equation gives

$$
8=(-A+B+D)-(-A+B-D)=-(A+B)+(A+B)+D+D=2 D
$$

so we see that $D=4$. Plugging $D=4$ and $B=-A$ into the second equation gives $6=B+B+4=2 B+4$ and thus

$$
B=\frac{6-4}{2}=\frac{2}{2}=1 .
$$

Therefore the solution to the system is $A=-1, B=1, C=0, D=4$ and

$$
\begin{aligned}
\int \frac{6 x^{2}-2}{(x+1)(x-1)\left(x^{2}+1\right)} \mathrm{d} x & =-\int \frac{\mathrm{d} x}{x+1}+\int \frac{\mathrm{d} x}{x-1}+4 \int \frac{d x}{x^{2}+1} \\
& =-\ln |x+1|+\ln |x-1|+4 \arctan x+C
\end{aligned}
$$

5 (20 Points). Decide whether

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{2}-1}
$$

converges or diverges. If it converges, find the value of the integral.
Solution. By definition we have

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{2}-1}=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\mathrm{~d} x}{x^{2}-1}
$$

Factoring the denominator as $x^{2}-1=(x+1)(x-1)$ we can do the definite integral by partial fraction decomposition as follows. Set

$$
\frac{1}{(x-1)(x+1)}=\frac{A}{x-1}+\frac{B}{x+1}
$$

then clear denominators to get

$$
1=A(x+1)+B(x-1)=(A+B) x+(A-B)
$$

and equate coefficients to obtain the system

$$
\begin{aligned}
& 0=A+B \\
& 1=A-B .
\end{aligned}
$$

Adding the two equations together gives $1=2 A$, while subtracting the second equation from the first gives $-1=2 B$. Thus $A=1 / 2, B=-1 / 2$, and

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\mathrm{~d} x}{x^{2}-1} & =\lim _{t \rightarrow \infty}\left(\frac{1}{2} \int_{2}^{t} \frac{\mathrm{~d} x}{x-1}-\frac{1}{2} \int_{2}^{t} \frac{\mathrm{~d} x}{x+1}\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{1}{2}[\ln |x-1|-\ln |x+1|]_{2}^{t}\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{\ln |t-1|-\ln |t+1|-\ln (2-1)+\ln (2+1)}{2}\right) \\
& =\lim _{t \rightarrow \infty} \frac{1}{2}\left(\ln \left|\frac{t-1}{t+1}\right|+\ln (3)\right)
\end{aligned}
$$

Since both the natural logarithm and the absolute value functions are continuous we have

$$
\lim _{t \rightarrow \infty} \ln \left|\frac{t-1}{t+1}\right|=\ln \left(\lim _{t \rightarrow \infty}\left|\frac{t-1}{t+1}\right|\right)=\ln \left|\lim _{t \rightarrow \infty} \frac{t-1}{t+1}\right|=\ln (1)=0
$$

Therefore

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{2}-1}=\lim _{t \rightarrow \infty} \frac{1}{2}\left(\ln \left|\frac{t-1}{t+1}\right|+\ln (3)\right)=\frac{0+\ln (3)}{2}=\frac{\ln (3)}{2}
$$

Alternate Solution. This solution is much more difficult, in my opinion, but I include it becuase quite a few folks attempted this problem in this way.

We first make a couple of observations. The first is that

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \csc (\theta)=\frac{\mathrm{d}}{\mathrm{~d} \theta} \sin (\theta)^{-1}=-\sin (\theta)^{-2} \frac{\mathrm{~d}}{\mathrm{~d} \theta} \sin (\theta)=-\frac{\cos (\theta)}{\sin ^{2}(\theta)}=-\cot (\theta) \csc (\theta) .
$$

The second observation is that

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \cot (\theta)=\frac{\mathrm{d}}{\mathrm{~d} \theta} \tan (\theta)^{-1}=-\tan (\theta)^{-2} \frac{\mathrm{~d}}{\mathrm{~d} \theta} \tan (\theta)=\frac{\sec ^{2}(\theta)}{\tan ^{2}(\theta)}=\frac{1}{\cos ^{2}(\theta)} \frac{\cos ^{2}(\theta)}{\sin ^{2}(\theta)}=-\csc ^{2}(\theta)
$$

Combining these two together we have the important observation, which will come in handy later:

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta}(\csc (\theta)+\cot (\theta))=-\cot (\theta) \csc (\theta)-\csc ^{2}(\theta)=-\csc (\theta)(\cot (\theta)+\csc (\theta))
$$

With these observations in hand, we can forge ahead with a trigonometric substition $x=\sec (\theta)$, so that $x^{2}-1=\sec ^{2}(\theta)-1=\tan ^{2}(\theta)$, and $\mathrm{d} x=\sec (\theta) \tan (\theta) \mathrm{d} \theta$. The indefinite
integral we will need to compute is

$$
\begin{aligned}
\int \frac{\mathrm{d} x}{x^{2}-1} & =\int \frac{\sec (\theta) \tan (\theta)}{\tan ^{2}(\theta)} \mathrm{d} \theta \\
& =\int \frac{\sec (\theta)}{\tan (\theta)} \mathrm{d} \theta \\
& =\int \frac{1}{\cos (\theta)} \frac{\cos (\theta)}{\sin (\theta)} \mathrm{d} \theta \\
& =\int \frac{1}{\sin (\theta)} \mathrm{d} \text { theta } \\
& =\int \csc (\theta) \mathrm{d} \theta
\end{aligned}
$$

This is where we use our main observation above: take $u=\csc (\theta)+\cot (\theta)$ so that $-\mathrm{d} u=$ $\csc (\theta)(\csc (\theta)+\cot (\theta))$ and then

$$
\begin{aligned}
\int \csc (\theta) \mathrm{d} \theta & =\int \frac{\csc (\theta)(\csc (\theta)+\tan (\theta))}{\csc (\theta)+\cot (\theta)} \mathrm{d} \theta \\
& =-\int \frac{\mathrm{d} u}{u} \\
& =-\ln |\csc (\theta)+\cot (\theta)|+C
\end{aligned}
$$

Now, we can look at the triangle

to rewrite our solution in terms of x as

$$
\begin{aligned}
\int \frac{\mathrm{d} x}{x^{2}-1} & =-\ln \left(\frac{x}{\sqrt{x^{2}-1}}+\frac{1}{\sqrt{x^{2}-1}}\right)+C \\
& =-\ln \left(\frac{x+1}{\sqrt{x^{2}-1}}\right)+C \\
& =-\ln \left(\frac{\sqrt{x+1} \sqrt{x+1}}{\sqrt{x-1} \sqrt{x+1}}\right)+C \\
& =-\ln \left(\sqrt{\frac{x+1}{x-1}}\right)+C \\
& =-\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right)+C
\end{aligned}
$$

keeping in mind that we are only interested in $2 \leq x$.
Now we can evaluate the improper integral

$$
\begin{aligned}
\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{2}-1} & =\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\mathrm{~d} x}{x^{2}-1}=\lim _{t \rightarrow \infty}-\frac{1}{2}\left[\ln \left(\frac{x+1}{x-1}\right)\right]_{2}^{t} \\
& =\lim _{t \rightarrow \infty}-\frac{1}{2}\left(\ln \left(\frac{t+1}{t-1}\right)-\ln \left(\frac{2+1}{2-1}\right)\right) \\
& =\lim _{t \rightarrow \infty} \frac{1}{2}\left(\ln (3)-\ln \left(\frac{t+1}{t-1}\right)\right) \\
& =\frac{1}{2}(\ln (3)-0) \\
& =\frac{\ln (3)}{2}
\end{aligned}
$$

