MATH 142: EXAM 03

BLAKE FARMAN
UNIVERSITY OF SOUTH CAROLINA

> Answer the questions in the spaces provided on the question sheets and turn them in at the end of the class period.
> Unless otherwise stated, all supporting work is required. Unsupported or otherwise mysterious answers will not receive credit.
> You may not use a calculator or any other electronic device, including cell phones, smart watches, etc. By writing your name on the line below, you indicate that you have read and understand these directions.
> It is advised, although not required, that you check your answers.

Name: \qquad

Problem	Points Earned	Points Possible
1		25
2		25
3		25
4		25
Exam 1 Bonus		-
Exam 2 Bonus		-
Total		100

1. Problems

1 (25 Points). Find the radius and interval of convergence for the power series

$$
\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{n!}
$$

Solution. We use the Ratio Test. First we compute the limit

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{3^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{3^{n} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{3|x|}{n+1}=\lim _{n \rightarrow \infty} 3|x| \cdot \lim _{n \rightarrow \infty} \frac{1}{n+1}=3|x| \cdot 0=0
$$

Since $\rho<1$ holds for all x, the radius of convergence is $R=\infty$ and thus this series converges absolutely on $\mathbb{R}=(-\infty, \infty)$.

2 (25 Points). Find the Maclaurin series for the function

$$
f(x)=\frac{1}{(1-x)^{3}} .
$$

Solution. First we recognize that on $(-1,1)$ we have the power series

$$
F(x)=\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

so taking the derivative of the left-hand side twice yields

$$
F^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}(1-x)^{-1}=(-1)(1-x)^{-2}(-1)=(1-x)^{-2}
$$

and

$$
F^{\prime \prime}(x)=(-2)(1-x)^{-3}(-1)=2 \frac{1}{(1-x)^{3}} .
$$

Dividing both sides by 2 yields

$$
\frac{1}{2} F^{\prime \prime}(x)=\frac{1}{(1-x)^{3}}=f(x)
$$

Applying Term-by-Term Differentiation twice to the Maclaurin series for $F(x)$ we have

$$
F^{\prime}(x)=\sum_{n=0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} x} x^{n}=\sum_{n=0}^{\infty} n x^{n-1}=\sum_{n=1}^{\infty} n x^{n-1}
$$

and

$$
F^{\prime \prime}(x)=\sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} x} n x^{n-1}=\sum_{n=1}^{\infty} n(n-1) x^{n-2}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}
$$

Therefore

$$
f(x)=\frac{1}{(1-x)^{3}}=\frac{1}{2} F^{\prime \prime}(x)=\frac{1}{2} \sum_{n=2}^{\infty} n(n-1) x^{n-2}=\sum_{n=2}^{\infty} \frac{n(n-1)}{2} x^{n-2}
$$

holds for $-1<x<1$.
Alternative Solution. We could also compute this series directly. We have

$$
f(x)=\frac{1}{(1-x)^{3}}=(1-x)^{-3}
$$

so using

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(1-x)=-1
$$

the Chain Rule, the derivatives are

$$
\begin{aligned}
f^{\prime}(x) & =(-3)(1-x)^{-4}(-1)=\frac{3}{(1-x)^{4}}=\frac{(1+2)!}{2} \frac{1}{(1-x)^{3+1}} \\
f^{\prime \prime}(x) & =(-4)(3)(1-x)^{-5}(-1)=(4)(3)(1-x)^{-5}=\frac{4!}{2!(1-x)^{5}}=\frac{(2+2)!}{2(1-x)^{3+2}} \\
f^{\prime \prime \prime}(x) & =(-5)(4)(3)(1-x)^{-6}(-1)=(5)(4)(3)(1-x)^{-6}=\frac{5!}{2(1-x)^{3+3}}=\frac{(3+2)!}{2(1-x)^{3+3}} \\
& \ldots \\
f^{k}(x) & =\frac{(k+2)!}{2(1-x)^{3+k}}
\end{aligned}
$$

This gives us

$$
f^{k}(0)=\frac{(k+2)!}{2(1-0)^{3+k}}=\frac{(k+2)!}{2}
$$

and so the Maclaurin series is

$$
\sum_{k=0}^{\infty} \frac{f^{k}(0)}{k!} x^{k}=\sum_{k=0}^{\infty} \frac{(k+2)}{2(k!)} x^{k}=\sum_{k=0}^{\infty} \frac{(k+2)(k+1)}{2} x^{k}
$$

Using the Ratio Test we see that

$$
\lim _{k \rightarrow \infty}\left|\frac{(k+3)(k+2) x^{k+1}}{2} \cdot \frac{2}{(k+2)(k+3) x^{k}}\right|=\lim _{k \rightarrow \infty} \frac{k^{2}+5 k+6}{k^{2}+3 k+1}|x|=|x|
$$

implies this series converges on $(-1,1)$. Note, however, that in contrast with the previous solution, this does not give us any information about whether this series converges to $f(x)$!

3 (25 Points). Find the Maclaurin series for $x \ln (1+2 x)$.

Solution. Either recall that on $(-1,1]$

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}
$$

or, if you haven't memorized this formula, use substitution to get

$$
\frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

integrate the function using the change of variables $u=1+x, \mathrm{~d} u=\mathrm{d} x$ to get

$$
\int \frac{\mathrm{d} x}{1+x}=\ln (1+x)+c
$$

then apply Term-by-Term Integration to get

$$
\ln (1+x)+c=\int \frac{\mathrm{d} x}{1+x}=\sum_{n=0}^{\infty} \int(-1)^{n} x^{n} \mathrm{~d} x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{n+1}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}
$$

and, finally, observe that evaluating the left-hand side at $x=0$ yields

$$
\ln (1+0)+c=0+c=c
$$

and evaluating the right-hand side at $x=0$ yields

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} 0^{n}=\sum_{n=0}^{\infty} 0=0
$$

to see that $c=0$.
Using substitution and the formula for the product of two convergent power series, we have

$$
x \ln (1+2 x)=x \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(2 x)^{n}=x \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{n}}{n} x^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{n}}{n} x^{n+1}
$$

Having made the substitution, we note that this holds for $-1<2 x \leq 1$ or, equivalently, $-1 / 2<x \leq-1 / 2$.

Bare-hand Solution. First we recall that

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n},-1 \leq x \leq 1
$$

so

$$
\frac{1}{1+2 x}=\frac{1}{1-(-2 x)}=\sum_{n=0}^{\infty}(-2 x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{n}
$$

holds so long as $|-2 x|=2|x|<1$ or, equivalently, $|x|<1 / 2$. Now we observe that using the change of variables $u=1+2 x, \mathrm{~d} u / 2=\mathrm{d} x$, the integral of the left-hand side is

$$
\int \frac{\mathrm{d} x}{1+2 x}=\int \frac{\mathrm{d} u}{2 u}=\frac{1}{2} \int \frac{\mathrm{~d} u}{u}=\frac{1}{2} \ln (u)+c=\frac{1}{2} \ln (1+2 x)+c
$$

while applying Term-by-Term Integration to the series yields

$$
\frac{1}{2} \ln (1+2 x)+c=\int \frac{\mathrm{d} x}{1+2 x}=\sum_{n=0}^{\infty} \int\left[(-1)^{n} 2^{n} x^{n}\right] \mathrm{d} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{n+1} x^{n+1}
$$

on $(-1 / 2,1 / 2)$. Evaluating the left-hand side of this equation at $x=0$ we have

$$
\frac{1}{2} \ln (1+2(0))+c=\frac{1}{2} \ln (1)+c=0+c=c
$$

while evaluating the right-hand side of this equation at $x=0$ we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{n+1} 0^{n+1}=\sum_{n=0}^{\infty} 0=0
$$

implies that $c=0$. Multiplying both sides by $2 x$ we obtain

$$
x \ln (1+2 x)=2 x \sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n}}{n+1} x^{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n+1}}{n+1} x^{n+2}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{n}}{n} x^{n+1}
$$

for $-1 / 2<x<1 / 2$. This equality also holds for $x=1 / 2$, but requires some care.
4 (25 Points). Find the Maclaurin series for

$$
\ln \left(\frac{1+x}{1-x}\right)
$$

Solution. First, rewrite

$$
\ln \left(\frac{1+x}{1-x}\right)=\ln (1+x)-\ln (1-x)
$$

Next, we recall that

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}
$$

holds for $-1<x \leq 1$. Using substitution we obtain

$$
\ln (1-x)=\ln (1+(-x))=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(-1)^{n}}{n}(-x)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{2 n-1}}{n} x^{n}=-\sum_{n=1}^{\infty} \frac{1}{n} x^{n}
$$

because

$$
(-1)^{2 n-1}=(-1)^{2 n}(-1)^{-1}=\frac{\left((-1)^{2}\right)^{n}}{-1}=\frac{1^{n}}{-1}=\frac{1}{-1}=-1
$$

which holds for $-1 \leq x<1$.
Since both of these series converge on $(-1,1)$, we have

$$
\begin{aligned}
\ln \left(\frac{1+x}{1-x}\right) & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}-\left(-\sum_{n=1}^{\infty} \frac{1}{n} x^{n}\right) \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}+\sum_{n=1}^{\infty} \frac{1}{n} x^{n} \\
& =\sum_{n=1}^{\infty}\left[\frac{(-1)^{n-1}}{n} x^{n}+\frac{1}{n} x^{n}\right] \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}+1}{n} x^{n}
\end{aligned}
$$

When n is an even number, $n-1$ is odd, so

$$
(-1)^{n-1}+1=-1+1=0
$$

and when n is an odd number, $n-1$ is even, so

$$
(-1)^{n-1}+1=1+1=2 .
$$

Therefore

$$
\ln \left(\frac{1+x}{1-x}\right)=\sum_{k=0}^{\infty} \frac{2}{2 k+1} x^{2 k+1}
$$

holds for $-1<x<1$. We note that because the function

$$
\ln \left(\frac{1+x}{1-x}\right)
$$

is not defined at $x=1$ and when $x=-1$ the series

$$
\sum_{k=0}^{\infty} \frac{2}{2 k+1}(-1)^{2 k+1}=\sum_{k=0}^{\infty} \frac{-2}{2 k+1}=-2-\frac{2}{3}-\frac{2}{5}-\ldots
$$

does not converge to zero, this equality does not hold at either of the endpoints.

Bare-hand Solution. First, rewrite

$$
\ln \left(\frac{1+x}{1-x}\right)=\ln (1+x)-\ln (1-x) .
$$

We see that by making the change of variables $u=1+x, \mathrm{~d} u=\mathrm{d} x$ we have

$$
\int \frac{\mathrm{d} x}{1+x}=\int \frac{\mathrm{d} u}{u}=\ln (u)+c_{1}=\ln (1+x)+c_{2}
$$

and making the change of variables $u=1-x,-\mathrm{d} u=-\mathrm{d} x$ we have

$$
\int \frac{\mathrm{d} x}{1-x}=-\int \frac{\mathrm{d} u}{u}=-\left(\ln (u)+c_{2}\right)=-\ln (1-x)-c_{2} .
$$

Letting $c=c_{1}-c_{2}$ we have

$$
\begin{aligned}
\ln (1+x)-\ln (1-x)+c & =\int \frac{\mathrm{d} x}{1+x}+\int \frac{\mathrm{d} x}{1-x} \\
& =\int\left[\frac{1}{1+x}+\frac{1}{1-x}\right] \mathrm{d} x
\end{aligned}
$$

For $-1<x<1$ we have

$$
\frac{1}{1+x}+\frac{1}{1-x}=\sum_{n=0}^{\infty}(-x)^{n}+\sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty}\left[(-1)^{n}+1\right] x^{n}
$$

We observe that when n is even $(-1)^{n}+1=1+1=2$ and when n is odd $(-1)^{n}+1=$ $-1+1=0$ so

$$
\frac{1}{1+x}+\frac{1}{1-x}=\sum_{k=0}^{\infty} 2 x^{2 k}
$$

Now, putting this all together and applying Term-by-Term Integration we have

$$
\begin{aligned}
\ln (1+x)-\ln (1-x)+c & =\int\left[\frac{1}{1+x}+\frac{1}{1-x}\right] \mathrm{d} x \\
& =\sum_{k=0}^{\infty} \int 2 x^{2 k} \mathrm{~d} x \\
& =\sum_{k=0}^{\infty} \frac{2}{2 k+1} x^{2 k+1}
\end{aligned}
$$

Evaluating the left-hand side of this equation at $x=0$ we get $\ln (1+0)-\ln (1-0)+c=$ $\ln (1)-\ln (1)+c=c$ and evaluating the right-hand side of this equation at $x=0$ we get

$$
\sum_{k=0}^{\infty} \frac{2}{2 k+1} 0^{2 k+1}=\sum_{k=0}^{\infty} 0=0 .
$$

Therefore

$$
\ln \left(\frac{1+x}{1-x}\right)=\ln (1+x)-\ln (1-x)=\sum_{k=0}^{\infty} \frac{2}{2 k+1} x^{2 k+1}
$$

for $-1<x<1$.

5 (Bonus - Exam 1). Decide whether

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{2}-1}
$$

converges or diverges. If it converges, find the value of the integral.
Solution. By definition we have

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{2}-1}=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\mathrm{~d} x}{x^{2}-1}
$$

Factoring the denominator as $x^{2}-1=(x+1)(x-1)$ we can do the definite integral by partial fraction decomposition as follows. Set

$$
\frac{1}{(x-1)(x+1)}=\frac{A}{x-1}+\frac{B}{x+1}
$$

then clear denominators to get

$$
1=A(x+1)+B(x-1)=(A+B) x+(A-B)
$$

and equate coefficients to obtain the system

$$
\begin{aligned}
& 0=A+B \\
& 1=A-B
\end{aligned}
$$

Adding the two equations together gives $1=2 A$, while subtracting the second equation from the first gives $-1=2 B$. Thus $A=1 / 2, B=-1 / 2$, and

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{\mathrm{~d} x}{x^{2}-1} & =\lim _{t \rightarrow \infty}\left(\frac{1}{2} \int_{2}^{t} \frac{\mathrm{~d} x}{x-1}-\frac{1}{2} \int_{2}^{t} \frac{\mathrm{~d} x}{x+1}\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{1}{2}[\ln |x-1|-\ln |x+1|]_{2}^{t}\right) \\
& =\lim _{t \rightarrow \infty}\left(\frac{\ln |t-1|-\ln |t+1|-\ln (2-1)+\ln (2+1)}{2}\right) \\
& =\lim _{t \rightarrow \infty} \frac{1}{2}\left(\ln \left|\frac{t-1}{t+1}\right|+\ln (3)\right)
\end{aligned}
$$

Since both the natural logarithm and the absolute value functions are continuous we have

$$
\lim _{t \rightarrow \infty} \ln \left|\frac{t-1}{t+1}\right|=\ln \left(\lim _{t \rightarrow \infty}\left|\frac{t-1}{t+1}\right|\right)=\ln \left|\lim _{t \rightarrow \infty} \frac{t-1}{t+1}\right|=\ln (1)=0
$$

Therefore

$$
\int_{2}^{\infty} \frac{\mathrm{d} x}{x^{2}-1}=\lim _{t \rightarrow \infty} \frac{1}{2}\left(\ln \left|\frac{t-1}{t+1}\right|+\ln (3)\right)=\frac{0+\ln (3)}{2}=\frac{\ln (3)}{2}
$$

6 (Bonus - Exam 2). Determine whether the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n}{4 n^{2}+1}
$$

converges conditionally, converges absolutely, or diverges.
Solution. First we observe that this series does not converge absolutely. By computing the limit

$$
\lim _{n \rightarrow \infty} \frac{\frac{2 n}{4 n n^{2}+1}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{4 n^{2}+1}=\frac{1}{2}>0
$$

we see that the series

$$
\sum_{n=1}^{\infty} \frac{2 n}{4 n^{2}+1}
$$

diverges by Part (1) of the Limit Comparison Test because the Harmonic Series diverges.
Next we try the Alternating Series Test. The first and third conditions are easy to verify: when $1 \leq n$ it's clear that

$$
0<u_{n}=\frac{2 n}{4 n^{2}+1}
$$

holds and also

$$
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{2 n}{4 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}} \cdot \frac{2 / n}{4+1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{2 / n}{4+1 / n^{2}}=\frac{0}{4+0}=0
$$

To conclude that this series converges by the Alternating Series Test, we need only verify that for some integer $N, u_{n+1} \leq u_{n}$ holds whenever $N \leq n$. Towards that end let $f(x)=\frac{2 x}{4 x^{2}+1}$ and observe that

$$
f^{\prime}(x)=\frac{2\left(4 x^{2}+1\right)-(2 x)(8 x)}{\left(4 x^{2}+1\right)^{2}}=\frac{8 x^{2}+2-16 x}{\left(4 x^{2}+1\right)^{2}}=\frac{-8 x^{2}+2}{\left(4 x^{2}+1\right)^{2}}<0
$$

holds if and only if

$$
-8 x^{2}+2<0
$$

which holds if and only if

$$
\sqrt{\frac{2}{8}}=\sqrt{\frac{1}{4}}=\frac{1}{\sqrt{4}}=\frac{1}{2}<x
$$

Since f is a decreasing function if and only if $f^{\prime}(x)<0$, we see that

$$
u_{n+1}=f(n+1) \leq f(n)=u_{n}
$$

holds whenever $1 \leq n$. Therefore the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n}{4 n^{2}+1}
$$

converges conditionally.

