
MATH 142: EXAM 03

BLAKE FARMAN

UNIVERSITY OF SOUTH CAROLINA

Answer the questions in the spaces provided on the question sheets and turn
them in at the end of the class period.

Unless otherwise stated, all supporting work is required. Unsupported or
otherwise mysterious answers will not receive credit.

You may not use a calculator or any other electronic device, including cell
phones, smart watches, etc. By writing your name on the line below, you

indicate that you have read and understand these directions.
It is advised, although not required, that you check your answers.

Name:

Problem Points Earned Points Possible
1 25
2 25
3 25
4 25

Exam 1 Bonus −
Exam 2 Bonus −

Total 100

Date: April 17, 2018.
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1. Problems

1 (25 Points). Find the radius and interval of convergence for the power series

∞∑
n=0

3nxn

n!
.

Solution. We use the Ratio Test. First we compute the limit

ρ = lim
n→∞

∣∣∣∣∣3n+1xn+1

(n+ 1)!
· n!

3nxn

∣∣∣∣∣ = lim
n→∞

3|x|
n+ 1

= lim
n→∞

3|x| · lim
n→∞

1

n+ 1
= 3|x| · 0 = 0.

Since ρ < 1 holds for all x, the radius of convergence is R =∞ and thus this series converges

absolutely on R = (−∞,∞).

2 (25 Points). Find the Maclaurin series for the function

f(x) =
1

(1− x)3
.

Solution. First we recognize that on (−1, 1) we have the power series

F (x) =
1

1− x
=
∞∑
n=0

xn

so taking the derivative of the left-hand side twice yields

F ′(x) =
d

dx
(1− x)−1 = (−1)(1− x)−2(−1) = (1− x)−2

and

F ′′(x) = (−2)(1− x)−3(−1) = 2
1

(1− x)3
.

Dividing both sides by 2 yields

1

2
F ′′(x) =

1

(1− x)3
= f(x).

Applying Term-by-Term Differentiation twice to the Maclaurin series for F (x) we have

F ′(x) =
∞∑
n=0

d

dx
xn =

∞∑
n=0

nxn−1 =
∞∑
n=1

nxn−1

and

F ′′(x) =
∞∑
n=1

d

dx
nxn−1 =

∞∑
n=1

n(n− 1)xn−2 =
∞∑
n=2

n(n− 1)xn−2
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Therefore

f(x) =
1

(1− x)3
=

1

2
F ′′(x) =

1

2

∞∑
n=2

n(n− 1)xn−2 =
∞∑
n=2

n(n− 1)

2
xn−2

holds for −1 < x < 1.

Alternative Solution. We could also compute this series directly. We have

f(x) =
1

(1− x)3
= (1− x)−3

so using

d

dx
(1− x) = −1

the Chain Rule, the derivatives are

f ′(x) = (−3)(1− x)−4(−1) =
3

(1− x)4
=

(1 + 2)!

2

1

(1− x)3+1

f ′′(x) = (−4)(3)(1− x)−5(−1) = (4)(3)(1− x)−5 =
4!

2!(1− x)5
=

(2 + 2)!

2(1− x)3+2

f ′′′(x) = (−5)(4)(3)(1− x)−6(−1) = (5)(4)(3)(1− x)−6 =
5!

2(1− x)3+3
=

(3 + 2)!

2(1− x)3+3

· · ·

fk(x) =
(k + 2)!

2(1− x)3+k

· · ·
This gives us

fk(0) =
(k + 2)!

2(1− 0)3+k
=

(k + 2)!

2

and so the Maclaurin series is

∞∑
k=0

fk(0)

k!
xk =

∞∑
k=0

(k + 2)

2(k!)
xk =

∞∑
k=0

(k + 2)(k + 1)

2
xk.

Using the Ratio Test we see that

lim
k→∞

∣∣∣∣∣(k + 3)(k + 2)xk+1

2
· 2

(k + 2)(k + 3)xk

∣∣∣∣∣ = lim
k→∞

k2 + 5k + 6

k2 + 3k + 1
|x| = |x|

implies this series converges on (−1, 1). Note, however, that in contrast with the previous

solution, this does not give us any information about whether this series converges to f(x)!

3 (25 Points). Find the Maclaurin series for x ln(1 + 2x).
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Solution. Either recall that on (−1, 1]

ln(1 + x) =
∞∑
n=1

(−1)n−1

n
xn

or, if you haven’t memorized this formula, use substitution to get

1

1 + x
=

1

1− (−x)
=
∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn,

integrate the function using the change of variables u = 1 + x, du = dx to get∫
dx

1 + x
= ln(1 + x) + c,

then apply Term-by-Term Integration to get

ln(1 + x) + c =

∫
dx

1 + x
=
∞∑
n=0

∫
(−1)nxn dx =

∞∑
n=0

(−1)n

n+ 1
xn+1 =

∞∑
n=1

(−1)n−1

n
xn

and, finally, observe that evaluating the left-hand side at x = 0 yields

ln(1 + 0) + c = 0 + c = c

and evaluating the right-hand side at x = 0 yields

∞∑
n=1

(−1)n−1

n
0n =

∞∑
n=0

0 = 0

to see that c = 0.
Using substitution and the formula for the product of two convergent power series, we

have

x ln(1 + 2x) = x
∞∑
n=1

(−1)n−1

n
(2x)n = x

∞∑
n=1

(−1)n−12n

n
xn =

∞∑
n=1

(−1)n−12n

n
xn+1.

Having made the substitution, we note that this holds for −1 < 2x ≤ 1 or, equivalently,

−1/2 < x ≤ −1/2.

Bare-hand Solution. First we recall that

1

1− x
=
∞∑
n=0

xn, −1 ≤ x ≤ 1

so

1

1 + 2x
=

1

1− (−2x)
=
∞∑
n=0

(−2x)n =
∞∑
n=0

(−1)n2nxn
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holds so long as |−2x| = 2|x| < 1 or, equivalently, |x| < 1/2. Now we observe that using the

change of variables u = 1 + 2x, du/2 = dx, the integral of the left-hand side is∫
dx

1 + 2x
=

∫
du

2u
=

1

2

∫
du

u
=

1

2
ln(u) + c =

1

2
ln(1 + 2x) + c

while applying Term-by-Term Integration to the series yields

1

2
ln(1 + 2x) + c =

∫
dx

1 + 2x
=
∞∑
n=0

∫ [
(−1)n2nxn

]
dx =

∞∑
n=0

(−1)n2n

n+ 1
xn+1

on (−1/2, 1/2). Evaluating the left-hand side of this equation at x = 0 we have

1

2
ln(1 + 2(0)) + c =

1

2
ln(1) + c = 0 + c = c

while evaluating the right-hand side of this equation at x = 0 we have

∞∑
n=0

(−1)n2n

n+ 1
0n+1 =

∞∑
n=0

0 = 0

implies that c = 0. Multiplying both sides by 2x we obtain

x ln(1 + 2x) = 2x
∞∑
n=0

(−1)n2n

n+ 1
xn+1 =

∞∑
n=0

(−1)n2n+1

n+ 1
xn+2 =

∞∑
n=1

(−1)n−12n

n
xn+1

for −1/2 < x < 1/2. This equality also holds for x = 1/2, but requires some care.

4 (25 Points). Find the Maclaurin series for

ln

(
1 + x

1− x

)
Solution. First, rewrite

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x).

Next, we recall that

ln(1 + x) =
∞∑
n=1

(−1)n−1

n
xn

holds for −1 < x ≤ 1. Using substitution we obtain

ln(1− x) = ln(1 + (−x)) =
∞∑
n=1

(−1)n−1(−1)n

n
(−x)n =

∞∑
n=1

(−1)2n−1

n
xn = −

∞∑
n=1

1

n
xn

because

(−1)2n−1 = (−1)2n(−1)−1 =
((−1)2)n

−1
=

1n

−1
=

1

−1
= −1,



6 BLAKE FARMAN

which holds for −1 ≤ x < 1.

Since both of these series converge on (−1, 1), we have

ln

(
1 + x

1− x

)
=

∞∑
n=1

(−1)n−1

n
xn −

(
−
∞∑
n=1

1

n
xn

)

=
∞∑
n=1

(−1)n−1

n
xn +

∞∑
n=1

1

n
xn

=
∞∑
n=1

[
(−1)n−1

n
xn +

1

n
xn

]

=
∞∑
n=1

(−1)n−1 + 1

n
xn

When n is an even number, n− 1 is odd, so

(−1)n−1 + 1 = −1 + 1 = 0

and when n is an odd number, n− 1 is even, so

(−1)n−1 + 1 = 1 + 1 = 2.

Therefore

ln

(
1 + x

1− x

)
=
∞∑
k=0

2

2k + 1
x2k+1

holds for −1 < x < 1. We note that because the function

ln

(
1 + x

1− x

)
is not defined at x = 1 and when x = −1 the series

∞∑
k=0

2

2k + 1
(−1)2k+1 =

∞∑
k=0

−2

2k + 1
= −2− 2

3
− 2

5
− . . .

does not converge to zero, this equality does not hold at either of the endpoints.

Bare-hand Solution. First, rewrite

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x).

We see that by making the change of variables u = 1 + x, du = dx we have∫
dx

1 + x
=

∫
du

u
= ln(u) + c1 = ln(1 + x) + c2
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and making the change of variables u = 1− x, − du = − dx we have∫
dx

1− x
= −

∫
du

u
= −(ln(u) + c2) = − ln(1− x)− c2.

Letting c = c1 − c2 we have

ln(1 + x)− ln(1− x) + c =

∫
dx

1 + x
+

∫
dx

1− x

=

∫ [
1

1 + x
+

1

1− x

]
dx

For −1 < x < 1 we have

1

1 + x
+

1

1− x
=
∞∑
n=0

(−x)n +
∞∑
n=0

xn =
∞∑
n=0

[
(−1)n + 1

]
xn

We observe that when n is even (−1)n + 1 = 1 + 1 = 2 and when n is odd (−1)n + 1 =

−1 + 1 = 0 so

1

1 + x
+

1

1− x
=
∞∑
k=0

2x2k

Now, putting this all together and applying Term-by-Term Integration we have

ln(1 + x)− ln(1− x) + c =

∫ [
1

1 + x
+

1

1− x

]
dx

=
∞∑
k=0

∫
2x2k dx

=
∞∑
k=0

2

2k + 1
x2k+1

Evaluating the left-hand side of this equation at x = 0 we get ln(1 + 0) − ln(1 − 0) + c =

ln(1)− ln(1) + c = c and evaluating the right-hand side of this equation at x = 0 we get

∞∑
k=0

2

2k + 1
02k+1 =

∞∑
k=0

0 = 0.

Therefore

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x) =

∞∑
k=0

2

2k + 1
x2k+1

for −1 < x < 1.
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5 (Bonus - Exam 1). Decide whether ∫ ∞
2

dx

x2 − 1

converges or diverges. If it converges, find the value of the integral.

Solution. By definition we have∫ ∞
2

dx

x2 − 1
= lim

t→∞

∫ t

2

dx

x2 − 1
.

Factoring the denominator as x2 − 1 = (x + 1)(x − 1) we can do the definite integral by

partial fraction decomposition as follows. Set

1

(x− 1)(x+ 1)
=

A

x− 1
+

B

x+ 1

then clear denominators to get

1 = A(x+ 1) +B(x− 1) = (A+B)x+ (A−B)

and equate coefficients to obtain the system

0 = A+B

1 = A−B.

Adding the two equations together gives 1 = 2A, while subtracting the second equation from

the first gives −1 = 2B. Thus A = 1/2, B = −1/2, and

lim
t→∞

∫ t

2

dx

x2 − 1
= lim

t→∞

(
1

2

∫ t

2

dx

x− 1
− 1

2

∫ t

2

dx

x+ 1

)

= lim
t→∞

(
1

2

[
ln|x− 1| − ln|x+ 1|

]t
2

)
= lim

t→∞

(
ln|t− 1| − ln|t+ 1| − ln(2− 1) + ln(2 + 1)

2

)

= lim
t→∞

1

2

(
ln

∣∣∣∣t− 1

t+ 1

∣∣∣∣+ ln(3)

)
.

Since both the natural logarithm and the absolute value functions are continuous we have

lim
t→∞

ln

∣∣∣∣t− 1

t+ 1

∣∣∣∣ = ln

(
lim
t→∞

∣∣∣∣t− 1

t+ 1

∣∣∣∣
)

= ln

∣∣∣∣ limt→∞

t− 1

t+ 1

∣∣∣∣ = ln(1) = 0.
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Therefore ∫ ∞
2

dx

x2 − 1
= lim

t→∞

1

2

(
ln

∣∣∣∣t− 1

t+ 1

∣∣∣∣+ ln(3)

)
=

0 + ln(3)

2
=

ln(3)

2
.

6 (Bonus - Exam 2). Determine whether the series

∞∑
n=1

(−1)n
2n

4n2 + 1

converges conditionally, converges absolutely, or diverges.

Solution. First we observe that this series does not converge absolutely. By computing the

limit

lim
n→∞

2n
4n2+1

1
n

= lim
n→∞

2n2

4n2 + 1
=

1

2
> 0

we see that the series
∞∑
n=1

2n

4n2 + 1

diverges by Part (1) of the Limit Comparison Test because the Harmonic Series diverges.

Next we try the Alternating Series Test. The first and third conditions are easy to verify:

when 1 ≤ n it’s clear that

0 < un =
2n

4n2 + 1

holds and also

lim
n→∞

un = lim
n→∞

2n

4n2 + 1
= lim

n→∞

n2

n2
· 2/n

4 + 1/n2
= lim

n→∞

2/n

4 + 1/n2
=

0

4 + 0
= 0.

To conclude that this series converges by the Alternating Series Test, we need only verify that

for some integer N , un+1 ≤ un holds whenever N ≤ n. Towards that end let f(x) = 2x
4x2+1

and observe that

f ′(x) =
2(4x2 + 1)− (2x)(8x)

(4x2 + 1)2
=

8x2 + 2− 16x

(4x2 + 1)2
=
−8x2 + 2

(4x2 + 1)2
< 0

holds if and only if

−8x2 + 2 < 0

which holds if and only if √
2

8
=

√
1

4
=

1√
4

=
1

2
< x.
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Since f is a decreasing function if and only if f ′(x) < 0, we see that

un+1 = f(n+ 1) ≤ f(n) = un

holds whenever 1 ≤ n. Therefore the series

∞∑
n=1

(−1)n
2n

4n2 + 1

converges conditionally.


