CONTINUITY

BLAKE FARMAN
Lafayette College

Name:

Definition. A function, f, is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

1. Use the definition to show that the given function is continuous at the given number, a.

$$
\begin{aligned}
& \text { (a) } f(t)=\frac{t^{2}+5 t}{2 t+1}, a=2 . \\
& f(2)=\frac{2^{2}+5(2)}{2(z)+1}=\frac{4+10}{4+1}=\frac{14}{5} \\
& \lim _{t \rightarrow 2} f(t)=\lim _{t \rightarrow 2} \frac{t^{2}+5 t}{2 t+1}=\frac{2^{2}+5(2)}{2(2)+1}=\frac{12}{5}=f(2) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } f(x)=3 x^{4}-5 x+\sqrt[3]{x^{2}+4}, a=2 \\
& f(2)=3(2)^{4}-5(2)+\sqrt[3]{2^{2}+4}=3(16)-10+\sqrt[3]{8}=38+2=40 \\
& \lim _{x \rightarrow 2} f(x)=3(2)^{4}-5(2)+\sqrt[3]{2^{2}+4}=3(16)-10+\sqrt[3]{8}=2 / 0=f(2) .
\end{aligned}
$$

2. Show that the function

$$
f(x)=\frac{x-1}{3 x+6}
$$

is continuous on the interval $(-\infty,-2) \cup(-2, \infty)$.
When $3 x+6 \neq 0$, the Limit Laws tell us

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} \frac{x-1}{3 x+6}=\frac{\lim _{x \rightarrow a} x-1}{\lim _{x \rightarrow a} 3 x+6}=\frac{a-1}{3 a+6}=f(a)
$$

so f is continuous except when

$$
3 x+6=0 \Rightarrow 3 x=-6 \Rightarrow x=-6 / 3=-2
$$

3. Find the number k that makes the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{3}-8}{x^{2}-4} & x \neq 2 \\
k & x=2
\end{array}\right.
$$

continuous.

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)(x+2)} \\
& =\lim _{x \rightarrow 2} \frac{x^{2}+2 x+4}{x+2}=\frac{4+4+4}{4}=\frac{12}{4}=3
\end{aligned}
$$

So

$$
k=f(2)=\lim _{x \rightarrow 2} f(x)=3
$$

4. Use continuity to evaluate the given limit.
(a) $\lim _{x \rightarrow \pi} \sin (x+\sin (x))$

$$
\begin{aligned}
& =\sin \left(\lim _{x \rightarrow \pi} x+\sin (x)\right) \\
& =\sin (\pi+\sin (\pi)) \\
& =\sin (\pi+0) \\
& =\sin (\pi) \\
& =0
\end{aligned}
$$

(b) $\lim _{x \rightarrow 4} x \sqrt{20-x^{2}}=\lim _{x \rightarrow 4} x \sqrt{\lim _{x \rightarrow 4}\left(20-x^{2}\right)}$

$$
\begin{aligned}
& =4 \sqrt{20-4^{2}} \\
& =4 \sqrt{20-16} \\
& =4 \sqrt{4} \\
& =4(2) \\
& =8
\end{aligned}
$$

5. Use the Intermediate Value Theorem to show that there is a solution to the given equation in the specified interval.
Note: You do not need to find the solution!
(a) $x^{4}+x-3=0,(1,2)$
$f(x)=x^{4}+x-3$ is continuous, $f(1)=1+1-3=2-3=-1<0$, and $f(2)=2^{4}+2-3=16-1=15>0$, so $f(c)=0$ for some $1<c<2$.
(b) $\frac{2}{x}=x-\sqrt{x},(2,3)$
$f(x)=\frac{2}{x}-x+\sqrt{x}$ is continuous on $(2,3), f(2)=1-2+\sqrt{2}=\sqrt{2}-1>0$, and $f(3)=\frac{3}{2}-3+\sqrt{3}=\frac{-3}{2}+\sqrt{3}<\frac{-3}{2}+2=\frac{-1}{2}<0$, so $f(c)=0$ for some $2<c<3$.
(c) $\cos (x)=x,(0,1)$
$f(x)=\cos (x)-x$ is continuous, $f(0)=\cos (0)-0=1$, and

$$
f(1)=\cos (1)-1<\cos (0)-1=1-1=0, s_{0}
$$

$f(c)=0$ for some $0<c<1$.

