CONTINUITY

BLAKE FARMAN
Lafayette College

Name:

Definition. A function, f, is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

1. Use the definition to show that the given function is continuous at the given number, a.
(a) $f(t)=\frac{t^{2}+5 t}{2 t+1}, a=2$.
(b) $f(x)=3 x^{4}-5 x+\sqrt[3]{x^{2}+4}, a=2$.
2. Show that the function

$$
f(x)=\frac{x-1}{3 x+6}
$$

is continuous on the interval $(-\infty,-2) \cup(-2, \infty)$.
3. Find the number k that makes the function

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{3}-8}{x^{2}-4} & x \neq 2 \\
k & x=2
\end{array}\right.
$$

continuous.
4. Use continuity to evaluate the given limit.
(a) $\lim _{x \rightarrow \pi} \sin (x+\sin (x))$
(b) $\lim _{x \rightarrow 4} x \sqrt{20-x^{2}}$
5. Use the Intermediate Value Theorem to show that there is a solution to the given equation in the specified interval.
Note: You do not need to find the solution!
(a) $x^{4}+x-3=0,(1,2)$
(b) $\frac{2}{x}=x-\sqrt{x},(2,3)$
(c) $\cos (x)=x,(0,1)$

