CURVE SKETCHING

BLAKE FARMAN
Lafayette College

Name:

1. Sketch the curve

$$
f(x)=3 x^{4}-8 x^{3}+6 x^{2}
$$

(a) State the domain of f.

$$
(-\infty, \infty)
$$

(b) Find the intercepts and express them as an (x, y) pair. Write NONE if there are none.

$$
\begin{aligned}
& x \text {-intercep ts): }(0,0) \\
& \quad y \text {-intercept: }(0,0) \\
& 3 x^{4}-8 x^{3}+6 x^{2}=x^{2}\left(3 x^{2}-8 x+6\right) \\
& D=(-8)^{2}-4(3)(6)=64-72<0 \text {, so } 3 x^{2}-8 x+6 \text { irreducible. }
\end{aligned}
$$

(c) Is the function even, odd, or neither? What type of symmetry does the function have?

$$
\begin{aligned}
f(-x) & =3(-x)^{4}-8(-x)^{3}+6(-x)^{2} \\
& =3 x^{4}+8 x^{3}+6 x^{2} \\
& \neq f(x),-f(x)
\end{aligned}
$$

so neither even nor odd, no symmetry.
(d) Find the asymptotes. Write NONE if there are none.

Horizontal: NONE
Vertical: NONE
(e) Find the intervals where the function is increasing and decreasing. Write NONE if not applicable.

Increasing: $(0,1) \cup(1, \infty)$
Decreasing: $(-\infty, 0)$
(f) State the local maximum and local minimum values). Write NONE if not applicable.

Local maximum values): NONE
Local minimum value (s): $(0,0)$
(g) Find the intervals on which the function is concave up and concave down. State the inflection points. Write NONE if not applicable.

Concave Up: $(-\infty, 1 / 3) \cup(1, \infty)$
Concave Down: $(1 / 3,1)$
Inflection Points: $\left(\frac{1}{3}, \frac{33}{81}\right),(1,1)$

$$
\begin{aligned}
& f(x)=3 x^{4}-8 x^{3}+6 x^{2} \\
& f^{\prime}(x)=12 x^{3}-24 x^{2}+12 x=12 x\left(x^{2}-2 x+1\right)=12 x(x-1)^{2} \\
& f^{\prime \prime}(x)=36 x^{2}-48 x+12=12\left(3 x^{2}-4 x+1\right)=12(3 x-1)(x-1)
\end{aligned}
$$

$$
\begin{aligned}
f(1 / 3) & =\frac{3}{51}-\frac{8}{27}+\frac{6}{9} \\
& =\frac{3-24+54}{81}=\frac{33}{81} \\
f(1) & =3-8+6 \\
& =1
\end{aligned}
$$

(h) Use your answers to Parts (a)-(g) to sketch the curve. Be sure that your graph is labeled and neat.

2. Sketch the curve

$$
f(x)=\frac{2 x^{2}}{x^{2}-1}
$$

(a) State the domain of f.

$$
(-\infty,-1) \cup(-1,1) \cup(1, \infty)
$$

(b) Find the intercepts and express them as an (x, y) pair. Write NONE if there are none.

$$
\begin{aligned}
\text { x-intercept(s): } & (0,0) \\
\text { y-intercept: } & (0,0)
\end{aligned}
$$

(c) Is the function even, odd, or neither? What type of symmetry does the function have?

$$
\begin{aligned}
& \text { Even; symmetry about } y \text {-axis: } \\
& f(-x)=\frac{2(-x)^{2}}{(-x)^{2}-1}=\frac{2 x^{2}}{x^{2}-1}=f(x)
\end{aligned}
$$

(d) Find the asymptotes. Write NONE if there are none.

Horizontal: $\quad y=2$
Vertical: $\quad x=-1, \quad x=1$
(e) Find the intervals where the function is increasing and decreasing. Write NONE if not applicable.

Increasing: $(-\infty,-1) \cup(-1,0)$
Decreasing: $(0,1) \cup(1, \infty)$
(f) State the local maximum and local minimum values). Write NONE if not applicable.

$$
\begin{array}{ll}
\text { Local maximum value (s): } & (0,0) \\
\text { Local minimum values): NoNE }
\end{array}
$$

(g) Find the intervals on which the function is concave up and concave down. State the inflection points. Write NONE if not applicable.

Inflection Points: NONE

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{2 x^{2}}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{2}{1-1 / x^{2}}=\frac{2}{1-0}=2 \\
& f^{\prime}(x)=\frac{4 x\left(x^{2}-1\right)-2 x^{2}(2 x)}{\left(x^{2}-1\right)^{2}}=\frac{4 x^{3}-4 x-4 x^{3}}{\left(x^{2}-1\right)^{2}}=\frac{-4 x}{\left(x^{2}-1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{-4\left(x^{2}-1\right)^{2}-(-4 x)(2)\left(x^{2}-1\right)(2 x)}{\left(x^{2}-1\right)^{4}}=\frac{-4 x^{2}+4+16 x^{2}}{\left(x^{2}-1\right)^{3}}=\frac{12 x^{2}+4}{\left(x^{2}-1\right)^{3}}
\end{aligned}
$$

$$
\xrightarrow[(-1,0)]{\substack{y=x^{2}-1 \\(1,0)}}+
$$

(h) Use your answers to Parts (a)-(g) to sketch the curve. Be sure that your graph is labeled and neat.

