DERIVATIVE RULES

BLAKE FARMAN

Lafayette College

Namo:			
	Name:		

Use **only the following rules** to compute the derivative of the given function.

Theorem. Let c and n be constants. If f and g are differentiable functions, then

Derivative of a Constant Function: $\frac{\mathrm{d}}{\mathrm{d}x}\left(c\right)=0$

Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$

Constant Multiple Rule: $\frac{d}{dx}(cf(x)) = cf'(x)$

Sum Rule: $\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$

Difference Rule: $\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$

1.
$$f(x) = \pi^{400}$$

2.
$$f(x) = 10x^4 + 3x^2 - 7x + 500\pi$$

3.
$$f(x) = 6\sqrt[3]{x^2} + 2\sqrt{x^3}$$

4.
$$f(x) = (x+2)^2$$

5.
$$f(x) = (3x - 1)(x + 2)$$

6.
$$f(x) = \frac{1}{x^{12}} + 7x - 21$$

Find the equation of the line tangent to the given curve at the given point.

7.
$$f(x) = 2x^3 - x^2 + 2$$
, (1,3).

8.
$$f(x) = \sqrt{x}$$
, $(1,1)$.

9.
$$f(x) = x^2$$
, $(1,1)$