DERIVATIVES

BLAKE FARMAN
Lafayette College

Name:

In each of the following problems, use the limit definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to compute the derivative of the given function.

1. $g(x)=\frac{x+3}{x+5}$

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{(x+h)+3}{(x+h)+5}-\frac{(x+3)}{(x+5)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{(x+h+3)(x+5)-(x+3)(x+h+5)}{(x+h+5)(x+5)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left(\frac{\left.x^{2}+5 x+h h x+5 h+3\right) x+15-\left(x^{2}+h x+5 x+3 x+3 h+15\right)}{h(x+h+5)(x+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{5 h-3 h}{h(x+h+5)(x+5)} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{} \frac{2 h(x+h+5)(x+5)}{} \\
& =\lim _{h \rightarrow 0} \frac{2}{(x+h+5)(x+5)}=\frac{\sqrt{\frac{2}{(x+5)^{2}}}}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sqrt{9-(x+h)}-\sqrt{9-x}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{9-x-h}-\sqrt{9-x}}{h} \frac{(\sqrt{5-x-h}+\sqrt{9-x})}{(\sqrt{5-x-h}+\sqrt{9-x})} \\
&=\lim _{h \rightarrow 0} \frac{(9-x-h)-(9-x)}{h(\sqrt{5-x-h}+\sqrt{9-x})}=\lim _{h \rightarrow 0} \frac{h-x-h-9+x}{h(\sqrt{5-x-h}+\sqrt{9-x})} \\
&=\lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{5-x}-h+\sqrt{9-x})}=\lim _{h \rightarrow 0} \frac{-1}{(\sqrt{5-x-h}+\sqrt{9-x})} \\
&=\frac{-1}{\sqrt{9-x-0}+\sqrt{9-x}}=\frac{-1}{2 \sqrt{9-x}}
\end{aligned}
$$

