MEAN VALUE THEOREM

BLAKE FARMAN

Lafayette College

Name:

Theorem (Mean Value). Let f be a function that satisfies the following hypotheses:
(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or, equivalently,

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

In Problems 1 through 4, verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval and find all numbers c that satisfy its conclusion.

1. $f(x)=x^{3}-x^{2}-6 x+2,[0,3]$
$f(0)=2 \quad f(3)=3^{3}-3^{2}-6(3)+2=2$
By the M.U.T, there is some $O<c<3$ satisfying

$$
\begin{gathered}
f^{\prime}(c)=3 c^{2}-2 c-6=\frac{2-2}{3-0}=0 \\
c=\frac{2 \pm \sqrt{4+4(3)(6)}}{6}=\frac{2 \pm 2 \sqrt{1+18}}{6}=\frac{1 \pm \sqrt{19}}{3}
\end{gathered}
$$

Since $\sqrt{16}=4<\sqrt{19}<\sqrt{25}=5$ we have

$$
\frac{1+4}{3}=\frac{5}{3}<\frac{1+\sqrt{19}}{3}<\frac{1+5}{3}=2 \text { and } \frac{1-5}{3}=\frac{-4}{3}<\frac{1-\sqrt{19}}{3}<\frac{1-4}{3}=-1
$$

$$
\text { So } C=\frac{1+\sqrt{19}}{3} \text { is the only solution to } f^{\prime}(c)=0 \text { on }(0,3) \text {. }
$$

2. $f(x)=\cos (2 x),[\pi / 8,7 \pi / 8]$

$$
f(\pi / 8)=\cos (\pi / 4)=\frac{\sqrt{2}}{2}, f(7 \pi / 4)=\cos (7 \pi / 4)=\frac{\sqrt{2}}{2}
$$

so by the M.U.T. There is some $\pi / 8<c<7 \pi / 8$ such that

$$
f^{\prime}(c)=-2 \sin (2 x)=\frac{\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}}{\frac{7 \pi}{8}-\pi / 8}=0
$$

Since $\sin (x)=0$ whenever $x=n \pi, n$ an integer, the only solution on $(\pi / 8,7 \pi / \delta)$ is $C=\pi / 2$

$$
-2 \sin \left(2\left(\frac{\pi}{2}\right)\right)=-2 \sin (\pi)=-2(0)=0
$$

3. $f(x)=3 x^{2}+2 x+5,[-1,1]$

$$
f(1)=3+2+5=10, f(-1)=3-2+5=6
$$

MOT $\Rightarrow f^{\prime}(c)=6 c+2=\frac{10-6}{1-(-1)}=\frac{4}{2}=2$
So $\quad C=0$
4. $f(x)=\frac{x}{x+2},[1,4]$

$$
\begin{aligned}
& f(1)=\frac{1}{1+2}=\frac{1}{3}, f(4)=\frac{4}{412}=\frac{4}{6}=\frac{2}{3}, \quad f^{\prime}(x)=\frac{(x+2)-x}{(x+2)^{2}}=\frac{2}{(x+2)^{2}} \\
& f^{\prime}(c)=\frac{2}{(c+2)^{2}}=\frac{\frac{2}{3}-\frac{1}{3}}{4-1}=\frac{\frac{1}{3}}{3}=\frac{1}{9} \\
& \Rightarrow 18=(c+2)^{2} \Rightarrow c+2= \pm \sqrt{18}= \pm \sqrt{2} \sqrt{9}= \pm 3 \sqrt{2} \\
& \Rightarrow c=-2 \pm 3 \sqrt{2}
\end{aligned}
$$

Since $-2-3 \sqrt{2}<0$, the only solution on $(1,4)$ must be

$$
c=-2+3 \sqrt{2}
$$

Note Even thigh we dort need to, we con deck this explicitly. $K \sqrt{2}<2 \Rightarrow 3<3 \sqrt{2}<6 \Rightarrow-2+3=1<-2+3 \sqrt{2}<-2+6=4$.

