PRODUCT AND QUOTIENT RULES

BLAKE FARMAN

Lafayette College

Name: \qquad

In each of the problems, use the
Product Rule. If f and g are differentiable functions, then

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

and
Quotient Rule. If f and g are differentiable functions, then

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

to compute the derivative. Use proper notation and simplify your final answers. In some cases it might be advantageous to simplify/rewrite first. Do not use rules found in later sections.

1. Let $f(x)=g(x) h(x), g(10)=-4, h(10)=560, g^{\prime}(10)=0, h^{\prime}(10)=4$. Find $f^{\prime}(10)$.
2. Let $z(-3)=6, z^{\prime}(-3)=15$, and $y(x)=\frac{z(x)}{1+x^{2}}$. Find $y^{\prime}(-3)$.
3. $f(x)=(1+\sqrt{x}) x^{3}$
4. $g(t)=\left(\frac{2}{t}+t^{5}\right)\left(t^{3}+1\right)$
5. $h(y)=\frac{1}{y^{3}+2 y+1}$

Compute the following derivatives using

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sin (x)=\cos (x) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} x} \cos (x)=-\sin (x)
$$

and the trigonometric identities

$$
\begin{array}{ll}
\tan (x)=\frac{\sin (x)}{\cos (x)} & \sec (x)=\frac{1}{\cos (x)} \\
\cot (x)=\frac{1}{\tan (x)}=\frac{\cos (x)}{\sin (x)} & \csc (x)=\frac{1}{\sin (x)}
\end{array}
$$

6. $\frac{\mathrm{d}}{\mathrm{d} x} \tan (x)$
7. $\frac{\mathrm{d}}{\mathrm{d} x} \cot (x)$
8. $\frac{\mathrm{d}}{\mathrm{d} x} \sec (x)$
9. $\frac{\mathrm{d}}{\mathrm{d} x} \csc (x)$
