RELATED RATES

BLAKE FARMAN
Lafayette College

Name: \qquad Solutions

1. Gas is escaping a spherical balloon at the rate of $4 \mathrm{~cm}^{3}$ per minute. How fast is the surface area shrinking when the radius is 24 cm ? For a sphere, $V=\frac{4}{3} \pi r^{3}$ and $S=4 \pi r^{2}$ where V is volume, S is surface area and r is the radius of the balloon.

$$
\frac{d s}{d t}=4 \pi \frac{d}{d t}\left(r^{2}\right)=4 \pi\left(2 r \frac{d r}{d t}\right)=8 \pi \frac{d r}{d t} \text {, so to find } \frac{d s}{d t}
$$

we need to know $\frac{d r}{d t}$. Compute

$$
\begin{aligned}
& \frac{d U}{d t}=\frac{4}{3} \pi \frac{d}{d t} r^{3}=\frac{4}{3} \pi 3 r^{2} \frac{d r}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
& \Rightarrow \frac{d r}{d t}
\end{aligned}=\frac{1}{4 \pi r^{2}} \frac{d V}{d t} .
$$

2. The top of a ladder slides down a vertical wall at a rate of 0.15 meters $/$ second. At the moment when the bottom of the ladder is 3 meters from the wall, it slides away from the wall at a rate of 0.2 meters/second. How long is the ladder?

$$
\text { Given: } \frac{d y}{d t}=\frac{-15}{100} \mathrm{~m} / \mathrm{s}=-\frac{3}{20} \mathrm{~m} / \mathrm{s} \quad x=3
$$

$$
\frac{d x}{d t}=\frac{2}{10} \frac{m}{s}=\frac{1}{5} \mathrm{~m} / \mathrm{s}
$$

Know $\frac{d l}{d t}=0$ because the ladder is a constant length.

$$
\begin{aligned}
x^{2}+y^{2}=l^{2} & \Rightarrow 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 l \frac{d l}{d t}=0 \\
& \Rightarrow y
\end{aligned}=\frac{-2 x \frac{d x}{d t}}{2 \frac{d y}{d t}}=\frac{-x \frac{d x}{d t}}{\frac{d y}{d t}}
$$

So

$$
\ell=\sqrt{x^{2}+y^{2}}=\sqrt{9+16}=\sqrt{25}=5 m
$$

3. Two cars start moving from the same pons. One travels south at $60 \mathrm{mi} / \mathrm{h}$ and the other travels west at $25 \mathrm{mi} / \mathrm{h}$. At what rate is the distance between the cars increasing two hours later?

Given: $y^{\prime}=\frac{d y}{d t}=60 \mathrm{mi} / \mathrm{h}, x^{\prime}=\frac{d x}{d t}=25 \mathrm{mi} / \mathrm{h}$
Want $z^{\prime}=\frac{d z}{d t}$ when $t=2$.

$$
\begin{aligned}
& x=2 x^{\prime}, y=2 y^{\prime}, z=\sqrt{4\left(x^{\prime}\right)^{2}+4\left(y^{\prime}\right)^{2}}=2 \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} \\
& x^{2}+y^{2}=z^{2} \Rightarrow 2 x x^{\prime}+2 y y^{\prime}=2 z z^{\prime} \Rightarrow x x^{\prime}+y y^{\prime}=z z^{\prime} \\
& \Rightarrow z^{\prime}=\frac{x x^{\prime}+y y^{\prime}}{z}=\frac{2\left(x^{\prime}\right)^{2}+2\left(y^{\prime}\right)^{2}}{2 \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}}=\frac{\left(\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right)^{\prime}}{\left(\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right)^{1 / 2}} \\
& =\left(\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right)^{1-1 / 2}=2 \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} \\
& =\sqrt{(25)^{2}+(60)^{2}}=2 \sqrt{5^{4}+2^{4} 3^{2} 5^{2}} \\
& =\sqrt{5^{2}(25+144)} \\
& =\sqrt{5^{2}} \sqrt{169} \\
& =(5) \sqrt{13^{2}} \\
& =5(13) \\
& =65 \mathrm{mph}
\end{aligned}
$$

4. A street light is mounted at the top of a 15 - ft -tall pole. A man 6 ft tall walks away from the pole with a speed of $5 \mathrm{ft} / \mathrm{s}$ along a straight path. How fast is the tip of his shadow moving when he is 40 ft from the pole?
(Hint: The length of the shadow is measured from the person to the tip of the shadow; the rate at which the tip of the shadow is moving is measured from the pole to the tip of the shadow.)

Want $x^{\prime}=\frac{d x}{d t}$

$$
\frac{b}{6}=\frac{x}{15}, b=x-a
$$

$$
\begin{aligned}
& 6 x=15 b=15(x-a)=15 x-15 a \\
\Rightarrow & -9 x=15 a \\
\Rightarrow & x=\frac{-15}{-9} a=\frac{5}{3} a \\
\Rightarrow & x^{\prime}=\frac{5}{3} a^{\prime}=\frac{5}{3}(5)=\frac{25}{3}
\end{aligned}
$$

