DERIVATIVES AND SHAPE

BLAKE FARMAN

Lafayette College

Name: _____

CRITICAL NUMBERS

Find the critical numbers of the given function

1. $f(x) = x^3 + 6x^2 - 15x$

2. $f(x) = 2x^3 + x^2 + 2x$

3. f(x) = |3x - 4|

4.
$$f(x) = \frac{x-1}{x^2 - x + 1}$$

DERIVATIVES AND SHAPE

FIRST DERIVATIVES

For each function use the first derivative to find

- the interval(s) where the given function is increasing
- the interval(s) where the given function is decreasing
- the local maximum/minimum values

5. $f(x) = 2x^3 - 9x^2 + 12x - 3$

6. $f(x) = x^4 - 2x^2 + 3$

7.
$$f(x) = \frac{x}{x^2 + 1}$$

8.
$$f(x) = \frac{x^2}{x-4}$$

DERIVATIVES AND SHAPE

SECOND DERIVATIVES

For each function use the second derivative to find

- the interval(s) where the given function is concave up
- the interval(s) where the given function is concave down
- the inflection points

9. $f(x) = 2x^3 - 9x^2 + 12x - 3$

10. $f(x) = x^4 - 2x^2 + 3$

11.
$$f(x) = \frac{x}{x^2 + 1}$$

12.
$$f(x) = \frac{x^2}{x-4}$$