ALTERNATING SERIES

BLAKE FARMAN
Lafayette College

Name: \qquad

Theorem. Let $\left\{b_{n}\right\}$ be a sequence with positive terms, $0<b_{n}$. If there exists some N such that
(1) $b_{n+1} \leq b_{n}$ whenever $n \leq N$ and
(2) $\lim _{n \rightarrow \infty} b_{n}=0$
then the Alternating Series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}
$$

converges.
Decide whether the following series converge or diverge.

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3+5 n}$
2. $\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n-1}{2 n+1}$
3. $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{\pi}{n}\right)$
4. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n^{2}+n+1}$
5. For what values of p is the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p}}
$$

convergent?
6. Approximate the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{6}}
$$

correct to four decimal places.

