COMPARISON TESTS

BLAKE FARMAN

Lafayette College

Name:

Theorem (The Comparison Tests). Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences, and assume there exists some number N such that

$$
0<a_{n} \leq b_{n}
$$

is satisfied whenever $n \geq N$.
(i) If $\sum a_{n}$ diverges, then $\sum b_{n}$ also diverges.
(ii) If $\sum b_{n}$ converges, then $\sum a_{n}$ also converges.

Theorem (The Limit Comparison Test). Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences, and assume there exists some number N such that

$$
0<a_{n}, b_{n}
$$

is satisfied whenever $n \geq N$. If there exists some number $c>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0
$$

then either

- $\sum a_{n}$ and $\sum b_{n}$ both converge, or
- $\sum a_{n}$ and $\sum b_{n}$ both diverge.

Decide whether the following series converge or diverge.

1. $\sum_{n=1}^{\infty} \frac{9^{n}}{3+10^{n}} 10^{n} \leq 10^{n}+3 \Rightarrow \frac{1}{3+10^{n}} \leq \frac{1}{10^{n}} \Rightarrow \frac{9^{n}}{3+10^{n}} \leq \frac{9^{n}}{10^{n}}$ So this series converges by comparison with the convergent geometric series

$$
\sum_{n=1}^{\infty} \frac{9}{10}\left(\frac{9}{10}\right)^{n-1}=\frac{9}{10\left(1-\frac{9}{10}\right)}=\frac{9}{10-9}=9
$$

2. $\sum_{k=1}^{\infty} \frac{(2 k-1)\left(k^{2}-1\right)}{(k+1)\left(k^{2}+4\right)^{2}}$

So we use the L.C.T. with the convergent p-series with $p=5-3=2$

$$
\begin{aligned}
\left.\lim _{k \rightarrow \infty} \frac{2 k^{3}-k^{2}-2 k+1}{k^{5}+k^{4}+8 k^{3}+8 k^{2}+16 k+16} \right\rvert\, \frac{1}{k^{2}} & =\lim _{k \rightarrow \infty} \frac{2 k^{5}-k^{4}-2 k^{3}+k^{2}}{k^{5}+k^{4}+8 k^{3}+8 k^{2}+6 k+16} \\
& =2>0
\end{aligned}
$$

Therefore $\sum_{k=1}^{\infty} \frac{(2 k+1)\left(k^{2}-1\right)}{(k+1)\left(k^{2}+4\right)^{2}}$ converges.
3. $\sum_{n=1}^{\infty} \frac{1+\cos (n)}{e^{n}}$

Since $-1 \leq \cos (n) \leq 1$ we have

$$
\frac{1+\cos (n)}{e^{n}} \leq \frac{1+1}{e^{n}}=2\left(\frac{1}{e}\right)^{n}=\frac{2}{e}\left(\frac{1}{e}\right)^{n-1}
$$

and

$$
\sum_{n=1}^{\infty} \frac{2}{e}\left(\frac{1}{e}\right)^{n-1}=\frac{2}{e(1-1 / e)}=\frac{2}{e-1}
$$

Therefore $\sum_{n=1}^{\infty} \frac{1+\cos (n)}{e^{n}}$ converges by Comparison
4. $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}+2}$

$$
\lim _{n \rightarrow \infty} \frac{2}{\sqrt{n}+2} /\left(\frac{1}{\sqrt{n}}\right)=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{\sqrt{n}+2}=2
$$

So
$\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}+2}$ Diverges by Limit Comparison with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
5. $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$

Since

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{1}{x}\right)}{\frac{1}{x}} & \stackrel{L^{\prime}+1}{=} \lim _{x \rightarrow \infty} \frac{\cos \left(\frac{1}{x}\right) \frac{d}{d x}\left(\frac{1}{x}\right)}{\frac{d}{d x}\left(\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow \infty} \cos \left(\frac{1}{x}\right) \\
& =\cos (0) \\
& =1
\end{aligned}
$$

we see

$$
\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=1>0
$$

so $\sum_{n=1}^{\infty} \sin (1 / n)$ diverges by Limit Comparison with the Harmmic Series.

