COMPARISON TESTS

BLAKE FARMAN

Lafayette College

Name: _

Theorem (The Comparison Tests). Let $\{a_n\}$ and $\{b_n\}$ be sequences, and assume there exists some number N such that

$$0 < a_n \le b_n$$

is satisfied whenever $n \geq N$.

- (i) If $\sum a_n$ diverges, then $\sum b_n$ also diverges.
- (ii) If $\sum b_n$ converges, then $\sum a_n$ also converges.

Theorem (The Limit Comparison Test). Let $\{a_n\}$ and $\{b_n\}$ be sequences, and assume there exists some number N such that

$$0 < a_n, b_n$$

is satisfied whenever $n \geq N$. If there exists some number c > 0 such that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$$

then either

- $\sum a_n$ and $\sum b_n$ both converge, or
- $\sum a_n$ and $\sum b_n$ both diverge.

Decide whether the following series converge or diverge.

1.
$$\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$$

2.
$$\sum_{k=1}^{\infty} \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$$

$$3. \sum_{n=1}^{\infty} \frac{1 + \cos(n)}{e^n}$$

$$4. \sum_{n=1}^{\infty} \frac{2}{\sqrt{n+2}}$$

5.
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$