COMPARISON TESTS

BLAKE FARMAN
Lafayette College

Name: \qquad

Theorem (The Comparison Tests). Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences, and assume there exists some number N such that

$$
0<a_{n} \leq b_{n}
$$

is satisfied whenever $n \geq N$.
(i) If $\sum a_{n}$ diverges, then $\sum b_{n}$ also diverges.
(ii) If $\sum b_{n}$ converges, then $\sum a_{n}$ also converges.

Theorem (The Limit Comparison Test). Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences, and assume there exists some number N such that

$$
0<a_{n}, b_{n}
$$

is satisfied whenever $n \geq N$. If there exists some number $c>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0
$$

then either

- $\sum a_{n}$ and $\sum b_{n}$ both converge, or
- $\sum a_{n}$ and $\sum b_{n}$ both diverge.

Decide whether the following series converge or diverge.

1. $\sum_{n=1}^{\infty} \frac{9^{n}}{3+10^{n}}$
2. $\sum_{k=1}^{\infty} \frac{(2 k-1)\left(k^{2}-1\right)}{(k+1)\left(k^{2}+4\right)^{2}}$
3. $\sum_{n=1}^{\infty} \frac{1+\cos (n)}{e^{n}}$
4. $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}+2}$
5. $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$
