GEOMETRIC SERIES

BLAKE FARMAN
Lafayette College

Name: \qquad

Theorem. The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\ldots
$$

converges if $|r|<1$ and diverges otherwise. The sum of the convergent series is

$$
s=\frac{a}{1-r},|r|<1
$$

Observation: For a geometric series, we can always find the value of r by taking the ratio of any two consecutive terms:

$$
\frac{a_{n+1}}{a_{n}}=\frac{a r^{n}}{a r^{n-1}}=r .
$$

1. Determine whether the series

$$
4+3+\frac{9}{4}+\frac{27}{16}+\ldots
$$

converges or diverges. If it is convergent, find its sum.
2. Determine whether the series

$$
\sum_{k=1}^{\infty} \frac{k(k+14)}{(k+15)^{2}}
$$

converges or diverges. If it converges, find its sum.
3. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{2^{n}+1}{3^{n}}
$$

converges or diverges. If it converges, find its sum.
4. Express $0 . \overline{8}$ as a rational number (i.e. a ratio of two integers).
5. Express $2 . \overline{516}$ as a rational number.

