# INTEGRAL TEST AND ESTIMATES OF SUMS 

BLAKE FARMAN<br>Lafayette College

Name: $\qquad$

Use the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ to answer the following questions.

1. Show that the function $f(x)=1 / x^{2}$ satisfies the hypotheses of the Integral Test. For $n$ a fixed integer, compute the improper integral

$$
\int_{n}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x
$$

Use this to conclude that the series $\sum_{n=1}^{\infty} 1 / n^{2}$ converges.
2. Use a calculator to find

$$
s_{10}=\sum_{n=1}^{10} \frac{1}{n^{2}}
$$

Use the intequality

$$
\int_{11}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x \leq R_{10} \leq \int_{10}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x
$$

to determine how good this estimate to the sum of the series is.
3. Use the inequality

$$
s_{10}+\int_{11}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq s_{10}+\int_{10}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x
$$

to find an open interval containing the number $s$. Compute the midpoint of this interval. Is the midpoint a better or worse approximation to the sum of the series than you found in Problem 2? Why or why not?
4. It is known that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Use this to compare your estimates from Problems 2 and 3.
5. Find the number of terms that you would need to ensure an estimate that is accurate to the first 3 decimal places.

Determine whether the following series converge or diverge.
6. $\sum_{n=1}^{\infty} \frac{2}{5 n-1}$
7. $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
8. $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$
9. $\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}$

