PARAMETRIC EQUATIONS

BLAKE FARMAN
Lafayette College

Name: \qquad

Sketch the curve by using parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.

1. $x=1-t^{2}, y=2 t-t^{2},-1 \leq t \leq 2$.
2. $x=t+\sin (t), y=\cos (t),-\pi \leq t \leq \pi$.
3. Eliminate the parameter to find a Cartesian equation of the curve. Sketch the curve and indicate the direction in which the curve is traced as the parameter increases.

$$
x=e^{t}, y=e^{-2 t} .
$$

4. Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.

$$
x=\sqrt{t}, y=t^{2}-2 t, t=4
$$

5. Use the formula

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t
$$

to find the length of the curve

$$
x=e^{t}-t, y=4 e^{t / 2}, 0 \leq t \leq 2
$$

6. Use the formula

$$
S=\int_{\alpha}^{\beta} 2 \pi y \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t
$$

to find the area of the surface obtained by rotating the curve about the x-axis

$$
x=t^{3}, y=t^{2}, 0 \leq t \leq 1
$$

