# POLAR COORDINATES 

BLAKE FARMAN<br>Lafayette College

Name: $\qquad$

1. Plot each of the following points in the plane, then convert them to Cartesian coordinates. (a) $(2,5 \pi / 6)$,
(b) $(1,-2 \pi / 3)$,
(c) $(-1,5 \pi / 4)$
2. Sketch $r=2 \cos (4 \theta)$.

Find the slope of the tangent line to the given polar curve at the point specified by the value of $\theta$.
3. $r=2 \cos (\theta), \theta=\pi / 3$
4. $r=\cos (\theta / 3), \theta=\pi$.
5. Use the formula

$$
A=\int_{a}^{b} \frac{1}{2} r^{2} \mathrm{~d} \theta
$$

to compute the area of one leaf of the four-leaved rose $r=\cos (2 \theta)$.
6. Use the formula

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{\mathrm{d} r}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta
$$

to set up an integral that computes the length of the cardioid $r=1+\sin (\theta)$.

