EXAM 2

BLAKE FARMAN
Lafayette College

> Answer the questions in the spaces provided on the question sheets and turn them in at the end of the exam period.
> It is advised, although not required, that you check your answers. All supporting work is required. Unsupported or otherwise mysterious answers will not receive credit.
> You may not use a calculator or any other electronic device, including cell phones, smart watches, etc.

Name: \qquad Solutions

Functions

1. Find the value of b that makes the function

$$
f(x)=\left\{\begin{array}{cl}
\frac{x^{2}-25}{x+5} & \text { if }-5<x \\
5 x+b & \text { if } x \leq-5
\end{array}\right.
$$

a continuous function.

$$
\lim _{x \rightarrow-5^{+}} f(x)=\lim _{x \rightarrow-5^{+}} \frac{x^{2}-25}{x+5}=\lim _{x \rightarrow-5^{+}} \frac{(x+5)(x-5)}{x+5}=\lim _{x \rightarrow-5^{+}} x-5=-5-5=-10
$$

$$
\lim _{x \rightarrow-5^{-}} f(x)=f(-5)=5(-5)+b=-25+b=-10
$$

$$
\Rightarrow b=-10+25=115
$$

2. Use the limit definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to compute the derivative of

$$
f(x)=\frac{1}{x}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x}{(x-h) x}-\frac{x+h}{x(x+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x-x-h}{x(x+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{-h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =\frac{-1}{x(x+0)} \\
& =\frac{-1}{x^{2}}
\end{aligned}
$$

Derivative Rules
3. Compute the line tangent to

$$
f(x)=\tan (x)
$$

at the point $(\pi / 4,1)$.

$$
\begin{aligned}
& f^{\prime}(x)=\sec ^{2}(x) \\
& f^{\prime}\left(\frac{\pi}{4}\right)=\sec ^{2}(\pi / 4)=\left(\frac{2}{\sqrt{2}}\right)^{2}=\frac{4}{2}=2
\end{aligned}
$$

4. Compute

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2} \sec (x)\right)=\frac{d}{d x}\left(x^{2}\right) \sec (x)+x^{2} \frac{d}{d x}\left[x^{2} \sec (x)\right] \\
&=2 x \sec (x) \\
&
\end{aligned}
$$

5. Compute

$$
\begin{aligned}
\frac{d}{d x} \frac{\cos (x)}{\sin ^{2}(x)} & =\frac{\frac{d}{d x}\left(x x(\cos (x)) \sin ^{2}(x)-\cos (x)\right]}{\sin (x) \frac{d}{d x} \sin ^{2}(x)} \\
& =\frac{-\sin (x) \sin ^{2}(x) \sin ^{2}(x)-\cos (x)\left(2 \sin (x) \frac{d}{d x} \sin (x)\right)}{\sin ^{4}(x)} \\
& =\frac{-\sin ^{3}(x)-2 \cos (x) \sin (x) \cos (x)}{\sin ^{4}(x)} \\
& =\frac{-\sin ^{2}(x)-2 \cos ^{2}(x)}{\sin ^{4}(x)}
\end{aligned}
$$

6. Compute

$$
\begin{aligned}
\frac{d}{d x} \cos \left(2 x^{2}+5 x\right) & =-\sin \left(2 x^{2}+5 x\right) \frac{d}{d x}\left(2 x^{2}+5 x\right) \\
& \left.=-\sin \left(2 x^{2}+5 x\right)\right]
\end{aligned}
$$

Implicit Differentiation and Related Rates
7. The top of a ladder slides down a vertical wall at a rate of 3 meters/second. At the moment when the top of the ladder is 4 meters from the ground, it slides away from the wall at a rate of 4 meters $/$ second. How long is the ladder?

$$
\begin{aligned}
& \Rightarrow 0=y \frac{d y}{d t}+x \frac{d x}{d t} \\
&=4(-3)+x(3) \\
&=-12+3 x \\
& \Rightarrow 3 x=12 \\
& \Rightarrow x=12 / 3=4 \\
& \text { So } l=\sqrt{3^{2}+y^{2}}=\sqrt{25}=5 m
\end{aligned}
$$

Derivatives and Shape

Use the function

$$
f(x)=x^{3}+9 x^{2}
$$

to answer the following questions.
8. Find the intervals where the function is increasing and decreasing. Write NONE if not applicable.

Increasing: $\quad(-\infty,-6) \cup(0, \infty)$
Decreasing:

$$
(-6,0)
$$

9. State the local maximum and local minimum values). Write NONE if not applicable.

Local maximum values): $\quad(-6,-108)$
Local minimum value (s):
$(0,0)$
10. Find the intervals on which the function is concave up and concave down. State the inflection points. Write NONE if not applicable.

$$
f^{\prime \prime}(x)=6 x+18=6(x+3)=0 \Rightarrow x=-3
$$

Asymptotes
11. Find the asymptotes of

$$
f(x)=\frac{3 x^{2}}{x^{2}-4}
$$

Write NONE if there are none.
Horizontal:

$$
y=3
$$

$$
x= \pm 2
$$

Vertical:

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}}{x^{2}-4}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}}\left(\frac{3}{1-4 / x^{2}}\right)=\lim _{x \rightarrow \infty} \frac{3}{1-4 / x^{2}}=\frac{3}{1-0}=3
$$

Since $3 x^{2} \geq 0$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2^{2}} f(x)=\infty, \lim _{x \rightarrow 2^{2}} f(x)=-\infty \\
& \lim _{x \rightarrow 2^{+}} f(x)=-\infty, \lim _{x \rightarrow 2^{2}-} f(x)=-\infty
\end{aligned}
$$

Curve Sketching

12. You are given the following information about a function, f :

- x-intercepts: $(0,0)$ and $(2,0)$,
- y-intercepts: $(0,0)$,
- increasing: $\left(\frac{3}{2}, \infty\right)$,
- asymptotes: none,
- critical points: $(0,0)$ and $\left(\frac{3}{2},-\frac{27}{16}\right)$,
- decreasing: $(-\infty, 3 / 2)$,
- concave up: $(-\infty, 0) \cup(1, \infty)$,
- concave down: $(0,1)$, and
- $f(1)=-1$.

Use this information to sketch the curve.

Closed Interval Method and Optimization
13. Find the absolute maximum and minimum values of $f(x)=x^{3}-6 x^{2}+9 x$ on $[-1,4]$.

$$
\begin{aligned}
& f(x)=x\left(x^{2}-6 x+9\right)=x(x-3)^{2} \\
& f^{\prime}(x)=3 x^{2}-12 x+9=3\left(x^{2}-4 x+3\right)=3(x-1)(x-3)=0 \\
& \Rightarrow x=1 \quad \text { or } x=3 \\
& f(-1)=-1(-1-3)^{2}=-16 \quad f(4)=4(4-3)^{2}=4 \\
& f(1)=1(1-3)^{2}=4 \\
& f(3)=3(3-3)^{2}=0 \quad \text { Max: }(1,4) 中(4,4)
\end{aligned}
$$

14. A box with a square base and no top must have a volume of $4 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used.

$$
\begin{aligned}
V & =l^{2} h=4=\rightarrow h^{2} \\
S & =l^{2}+4 h=l^{2}+4 l\left(\frac{2}{l^{2}}\right) \\
& =l^{2}+\frac{16}{l}=l^{2}+\left(6 l^{-1}\right.
\end{aligned}
$$

$$
S^{\prime}=2 x-16 x^{-2}=0
$$

$$
\Rightarrow 2 l=\frac{16}{e^{2}}=>=\frac{8}{e^{2}}
$$

When $l>0$

$$
\begin{aligned}
S^{\prime \prime} & =2+32 l^{-3} \\
& =2+\frac{l^{3}}{32}>0 \\
\Rightarrow l & =2 \text { a minimum }
\end{aligned}
$$

