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Background

Derived Categories and Fourier-Mukai Transformations

Derived categories were initially conceived by Grothendieck as a device for maintaining
cohomological data during his reformulation of algebraic geometry through scheme theory,
and were fleshed out by his student, Verdier, in his thesis [Ver77]. While originally devised
as a mere book keeping device, over time these objects have been recognized as the key
to linking algebraic geometry to a broad range of subjects, both within and without
mathematics. As such, the study of derived categories has risen to prominence as a
central subfield of algebraic geometry.

As is the case for any category associated to a mathematical object, a natural question
that arises is this: how much information about the original object is stored in the
category? For schemes X and Y , this naturally manifests itself as a question asking
how much information about the original schemes can be extracted from an equivalence,
D(X) → D(Y ), between their derived categories of quasi-coherent sheaves. For a general
functor, one quickly finds oneself grasping at little more than abstract nonsense. While
this may initially appear disheartening, history suggests a plausible attack.

Indeed, one takes inspiration from the simpler case of unital rings and their categories
of modules. While it is known in general that non-isomorphic rings may generate equiv-
alent categories of modules, the method of attack by Morita [Mor58] yields a surprising
classifying result: any additive equivalence of module categories is naturally isomorphic
to tensoring with a bimodule.

With this in mind, one constructs the analogous geometric functor, called a Fourier-
Mukai transform, with a kernel K ∈ D(X×Y ) playing the role of the bimodule, and poses
the question anew: are all such equivalences of this form? Relative to a generic functor
between derived categories, this is a remarkably simple object, and a positive answer
would be incredibly powerful. Unfortunately, the structure of the derived category is too
pathological to admit such a statement. However, if one is willing to shift perspective by
passing to a higher categorical structure, this becomes true in the more abstract context
under natural assumptions on the schemes.

Noncommutative Projective Schemes

Suppose, for example, that one is interested in studying a commutative graded k-algebra,
A = k⊕A1⊕· · ·, that is finitely generated in degree one. The edicts of modern algebraic
geometry suggest that one should consider passing to the projective space X = ProjA,
and studying its category QcohX of quasi-coherent sheaves. If one wishes to relax the
condition that A is commutative, then unfortunately many of these constructions become
inaccessible in general.

However, a famous result of Serre suggests a path: Qcoh (X) is equivalent to the
quotient of the category of graded A-modules, Gr (A), by the subcategory of torsion
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modules, Tors (A), in the sense of [Gab62]. In the noncommutative situation, these
categories retain the same properties as their commutative counterparts, leading Artin
and Zhang [AZ94] to define the category of quasi-coherent sheaves on a Noncommutative
Projective Scheme to be the category QGr (A) = Gr (A) /Tors (A) in an effort to harness
the power of the modern geometric approach in this noncommutative setting.

While these schemes do not, in general, admit a space on which to do traditional
geometry, they have proven effective in providing a way to adapt familiar geometric tools
from the commutative setting to the study of noncommutative algebras. If one subscribes
to this principle, then their importance in the commutative setting should suggest that
derived categories will play a leading role in this study. However, developments in this
area are conspicuously absent, suggesting that, as in the commutative setting, the primary
stumbling block is the absence of Fourier-Mukai kernels. Having such a statement for the
case of noncommutative projective schemes therefore seems of high priority.

Past Accomplishments

Fourier-Mukai Kernels for Noncommutative Projective Schemes

In order to attack the problem of providing Fourier-Mukai kernels for noncommutative
projective schemes, it is natural to abstract the problem to the higher categorical structure
of differential graded (dg) categories. Indeed, working within the homotopy category of
the 2-category of all small dg categories over a commutative ring, Ho (dgcatk), we gain
access to the incredibly elegant reformulation of Fourier-Mukai transformations at the
level of pre-triangulated dg categories through the framework of Toën’s derived Morita
theory [Toë07].

Consider first the case of varieties X and Y , for which Toën provides two critical
pieces of data:

1. (existence of an internal Hom) the localization of the category of all small dg
categories at quasi-equivalences, Ho (dgcatk), admits an internal Hom, RHom, and

2. (geometric recognition) the subcategory of the Hom between the dg enhance-
ments of D(X) and D(Y ) consisting of quasi-functors commuting with coproducts
is isomorphic in Ho (dgcatk) to the enhancement of the derived category of the
product, X × Y ,

RHomc

(
D(X),D(Y )

) ∼= D (X × Y ) .

It is first important to observe what data Toën’s machinery does and does not provide.
For a general triangulated functor, F : D(X) → D(Y), (1) yields no new geometric
information in that it provides no guidance on establishing (2). However, if the functor
in question admits a lift to a dg quasi-functor, then by (2) it must be an integral transform
and, moreover, it must be geometric in origin.

Complementing the machinery of Toën, Lunts and Orlov have established that tri-
angulated equivalences between derived categories of abelian categories lift to quasi-
equivalences of their associated dg categories [LO10]. For varieties, in light of geometric
recognition, the combination of these two results states that triangulated equivalences
F : D(X) → D(Y ) are necessarily geometric in origin.

Within the realm of noncommutative projective schemes, combining Toën’s internal
Hom with Lunts and Orlov’s uniqueness of differential graded enhancements immediately
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allows one to conclude that any equivalence F : D(X) → D(Y ) yields a quasi-equivalence
F : D(X) → D(Y ) at the differential graded level. Unfortunately, as in the case of
varieties, one obtains no new information by simply viewing this equivalence as an object
of the highly abstract internal Hom category. One therefore requires a noncommutative
projective analogue of geometric recognition.

In this direction, the most basic questions with which one must grapple are:

Question.

1. For noncommutative projective schemes, X and Y , what noncommutative
projective scheme plays the role of the product, X × Y ?

2. What is an integral transform in noncommutative projective geometry?

3. Does geometric recognition hold for X and Y (and X × Y )?

For the first, there really can be only one honest noncommutative projective scheme
deserving of the name: the Segre product. The second remains separate from the dg
structure, and no such creature has been observed in the literature. However, even a
glance at the simpler question of graded Morita theory [Zha96] indicates that the situation
is already more complicated for noncommutative projective schemes.

Finally, the answer to geometric recognition is positive under cohomological restric-
tions on X and Y . We provide these conditions on a pair of rings, which we refer to as a
delightful couple, a notion of integral transform, and establish geometric recognition for
noncommutative projective schemes under these conditions in [BF21]. A version of the
main theorem from the article is

Theorem ([BF21]). Let X and Y be noncommutative projective schemes associated
to a delightful couple, A and B, over a field, k. If A and B are both generated in
degree one, then geometric recognition holds for X and Y . That is, there exists a
quasi-equivalence

RHomc(D(X),D(Y )) ∼= D(X × Y ).

This geometric recognition holds for a general delightful couple, although one must step
slightly outside the bounds of noncommutative projective schemes, without losing the
(noncommutative) geometry, to obtain the correct product.

As an immediate corollary, one obtains that equivalences between noncommutative
projective schemes are necessarily (noncommutative) geometric in nature, along the lines
of Rickard [Ric89] or Orlov [Orl97]. Note that this statement makes no reference to
differential graded categories, and one recovers the analogous result for projective varieties
by restricting to commutative rings.

Theorem ([BF21]). Let X and Y be noncommutative projective schemes associated
to a delightful couple, A and B, over a field, k. If there is a triangulated equivalence
F : D(X) → D(Y ), then there exists an object K of D(X × Y ) whose associated
integral transform, ΦK, is an equivalence. That is, X and Y are Fourier-Mukai
partners.
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Future Work

As the introduction of Fourier-Mukai kernels to noncommutative algebraic geometry
forms only the foundation for a theory of derived categories in this new setting, there are
a great many questions suggested by the commutative case that need to be addressed.
Moving forward, the goal is to begin making progress on the following

Question. How far away from isomorphic are noncommutative Fourier-Mukai part-
ners?

In this direction, one should first understand the situation for noncommutative sur-
faces, which are the simplest properly noncommutative projective schemes. In the com-
mutative case, the situation is relatively straight-forward

Proposition ([Huy06, Prop 12.28]). A surface X admits only a finite number of Fourier-
Mukai partners.

Unfortunately, this result relies on the classification of minimal surfaces, which at present
is still an open problem for noncommutative surfaces [Art97], making it appear too op-
timistic to hope for such a result at present.

Instead, we restrict ourselves to the class of noncommutative surfaces analogous to P2.
These schemes have been completely classified [ATVdB07, Ste96, Ste97] and arise from
the Artin-Schelter regular algebras [AS87] of Gelfand-Kirillov dimension 3 with Hilbert
series (1 − t)−3 [SVdB01, Section 11]. These surfaces fall broadly into two categories
[Sta02]: those that are an honest P2 in the sense that qgrA is equivalent to the coherent
sheaves on a commutative P2, and those whose point modules are parameterized by an
elliptic curve, the latter containing the Sklyanin algebras. The primary goal of this project
is to prove the following

Objective. If X and Y are derived equivalent noncommutative P2s, then X ∼= Y .

As our framework allows us to regard traditional varieties as a special case of noncom-
mutative projective schemes, this objective is motivated by the special case of [Huy06,
Prop 12.28] due to Bondal and Orlov.

Theorem ([BO95]). Let X and Y be smooth projective varieties and assume that the
(anti-)canonical bundle of X is ample. If there exists an exact equivalence Db(X) ≃
Db(Y ), then X and Y are isomorphic.

Encouragingly, the main tool for the reconstruction of these varieties is the classi-
fication of point objects in the derived category, which appears to align well with the
point modules that are used to classify the noncommutative P2s. In order to tackle the
larger reconstruction theorem, there are natural questions that arise along the way to be
addressed in several phases of the research program.

The first is to focus on a systematic study of the derived categories of the noncom-
mutative projective schemes associated to non-degenerate Sklyanin algebras. During this
phase, work will be focused on answering the question of whether the point modules of
a Sklyanin algebra form a spanning class for the derived category. The goal is either to
prove the point modules form a spanning class for all Sklyanin algebras or to provide
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explicit counter-examples and reasonable conditions under which the point modules form
a spanning class.

The second phase of the program is to classify the point objects in the derived cat-
egory of the noncommutative projective schemes associated to non-degenerate Sklyanin
algebras. Positive results for this specific class of noncommutative surfaces will shed light
on the situation for more generic cases of noncommutative surfaces. The hope is this will
lead to a general classification of point objects in the derived category for noncommutative
projective schemes.

In the third phase, it is expected that classification results from the second phase will
characterize the point objects of the derived category as the point modules associated
to the Sklyanin algebras. Furthermore, the classification of point objects and a recon-
struction result for these simpler objects will hopefully lead to natural generalizations to
broader classes of noncommutative projective schemes.

Student Involvement

Graduate Students

For students who are interested in pursuing work in (noncommutative) algebraic geome-
try, the future work proposed above would provide multiple avenues for fruitful engage-
ment. These problems are multi-faceted and would provide students with opportunities
both to grapple with the theoretical apparatus and with computational approaches. As an
example, students could utilize software like SageMath to construct novel tools that can
be used to search classes of Artin-Schelter regular algebras for non-trivial Fourier-Mukai
partners.

For students with an eye towards more applied projects, recent mathematical develop-
ments suggest novel approaches to using my work to bridge the gap between mathematics
and computer science. Some examples include using enriched categories to study natural
language processing [BTV22] and methods of homological algebra and algebraic topology
to study data science [Oud15].

Undergraduate and Master’s Students

During my time at the University of Louisiana at Monroe, I have engaged students in short
term research projects through the Emerging Scholars program, and have several projects
in the pipeline for future students. These projects come from areas of mathematics that
are accessible to students with a variety of backgrounds, such as discrete mathematics,
formalization of mathematical results using the Lean proof assistant, knot theory, and
tropical geometry. These projects provide students with the opportunity to engage with
mathematics beyond what is available in the curriculum and to experience first-hand
what it is like to be a research mathematician. The scope of these projects can be
tailored to suit the goals of the individual student and range from an expository work in
which the student aims to expand his or her own knowledge, to a more lengthy senior
capstone project, to generating original results that would be suitable for publication in
an undergraduate journal or as a master’s thesis.
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