AREA AND VOLUME

BLAKE FARMAN
Lafayette College

Name:

1. Sketch the region enclosed by the curves $y=x^{3}$ and $y=x$, and compute the area of the region.

$$
\begin{aligned}
\int_{-1}^{0}\left[x^{3}-x\right] d x+\int_{0}^{1}\left[x-x^{3}\right] d x & =\left.\frac{1}{4} x^{4}\right|_{-1} ^{0}-\left.\frac{1}{2} x^{2}\right|_{-1} ^{0}+\left.\frac{1}{2} x^{2}\right|_{0} ^{1}-\left.\frac{1}{4} x^{4}\right|_{0} ^{1} \\
& =\frac{1}{4}(0-1)-\frac{1}{2}(0-1)+\frac{1}{2}(1-0)-\frac{1}{4}(1-0) \\
& =-\frac{1}{4}+\frac{1}{2}+\frac{1}{2}-\frac{1}{4} \\
& =\frac{1-\frac{1}{2}}{2}
\end{aligned}
$$

2. Find the volume of the solid obtained by rotating the region bounded by the given curves $y=x^{3}, y=x, 0 \leq x$ about the x-axis. Sketch a typical cross section of the solid.

Cross -Section

$$
\begin{aligned}
A(x) & =\pi R^{2}-\pi r^{2}=\pi\left(x^{2}-x^{6}\right) \\
\text { Volume } & =\int_{0}^{1} A(x) d x=\pi \int_{0}^{1}\left(x^{2}-x^{6}\right) d x \\
& =\pi\left(\left.\frac{1}{3} x^{3}\right|_{0} ^{1}-\left.\frac{1}{7} x^{7}\right|_{0} ^{1}\right) \\
& =\pi\left(\frac{1}{3}(1-0)-\frac{1}{7}(1-0)\right) \\
& =\pi\left(\frac{7-3}{21}\right) \\
& =\frac{4 \pi}{21}
\end{aligned}
$$

