The Relationship between Elevation Roughness and Tornado Activity: A Spatial Statistical Model Fit to Data from the Central Great Plains

Abstract

The statistical relationship between elevation roughness and tornado activity is quantified using a spatial model that controls for the effect of population on the availability of reports. Across a large portion of the central Great Plains the model shows that areas with uniform elevation tend to have more tornadoes on average than areas with variable elevation. The effect amounts to a 2.3% [(1.6%, 3.0%) = 95% credible interval] increase in the rate of a tornado occurrence per meter of decrease in elevation roughness, defined as the highest minus the lowest elevation locally. The effect remains unchanged if the model is fit to the data starting with the year 1995. The effect strengthens for the set of intense tornadoes and is stronger using an alternative definition of roughness. The elevation-roughness effect appears to be strongest over Kansas, but it is statistically significant over a broad domain that extends from Texas to South Dakota. The research is important for developing a local climatological description of tornado occurrence rates across the tornado-prone region of the Great Plains.

Publication
In Journal of Applied Meteorology and Climatology
Tyler Fricker
Tyler Fricker
Assistant Professor of Geography

I am an environmental geographer and climatologist who focuses on applied climatology and human-environment interaction through the study of natural hazards using computational and statistical methods.